Work coordinate setup is a time-consuming and difficult task in ultraprecision machining. The setup process determines the precision and tolerance of the machined parts. In ultraprecision machining, the table can be moved in the nanometer range, but the accuracy of the measuring device has not reached the nanometer accuracy range. Although several measurement methods have been proposed, the attained precision is still insufficient. Some methods also lose the precision when the sensor is changed with the tool after the work coordinate setup is completed. A work coordinate setup method proposed in this study could improve the precision and the measurement process using electron tunneling. Since the method can use the tool as a sensor probe, the changing process does not degrade the measurement precision. In addition, the proposed method can theoretically detect the distance between the tool and the workpiece in sub-nanometers like a scanning tunneling microscope. The simple system requires a precision current amplifier capable of measuring electron tunneling current in the picoampere to nanoampere range and a power supply. The method, installed on an ultra-precision machine tool, was tested on WC and aluminum material. The accuracy of the method was evaluated for applied voltage.
Zinc sulfide (ZnS) is a widely used material in far-infrared and near-infrared imaging systems due to its exceptional optical transmittance properties. Through a hot isostatic compression process, during manufacturing, ZnS undergoes crystal structure modifications, resulting in increased transmittance across the visible and infrared spectra. However, ZnS exhibits low fracture toughness and irregular crystal orientations, making it prone to brittle fracture during the conventional cutting processes. Such brittleness often leads to surface defects that scatter light, diminishing optical transmittance. Therefore, understanding the conditions conducive to ductile processing is critical and necessitates a thorough brittle fracture analysis. This study introduces a novel quantitative analysis method to determine the occurrence of ductile processing and brittle fracture in ZnS materials after the turning process. To validate the efficacy of this approach, experimental machining was conducted through diamond turning and magnetorheological fluid polishing processes. Subsequently, a comprehensive quantitative assessment of brittle fracture was performed. Additionally, the relationship between brittle fracture and optical transmittance was explored using the proposed analysis method.
Here in, a high-quality automotive camera lens was developed based on an ultra-precision diamond turning core and cyclic olefin polymer (COP) injection molding process. To improve surface roughness and achieve the accuracy of plastic injection molding lens, systematic mold core machining process was developed and demonstrated using the diamond turning machine. The cutting tool path was generated by using NanoCAM 2D, and it was partly revised to prevent interference between the cutting tool and the workpiece. After the initial machining using the generated tool path, the compensation-cutting process was conducted based on the measured surface profile of an initially machined surface. After two times of compensation machining, the fabricated core mold showed a shape error of 100 nm between peak to valley (PV) and Arithmetic mean roughness (Ra) of 3.9 nm. The performance of the fabricated core was evaluated using an injection molding test. Injection molded aspheric plastic lens showed contrasts that were higher than 55% at 0.0 F, 30% at 0.3 F, and 20% at 0.7 F without any moiré phenomenon that meets the specification for automotive vision module with 1MP and 140° field of view.
Citations
Citations to this article as recorded by
Research progress on grinding contact theory of axisymmetric aspheric optical elements Wenzhang Yang, Bing Chen, Bing Guo, Qingliang Zhao, Juchuan Dai, Guangye Qing Precision Engineering.2026; 97: 24. CrossRef
Performance enhancement of material removal using a surface-refinement model based on spatial frequency–response characteristics in magnetorheological finishing Minwoo Jeon, Seok-Kyeong Jeong, Woo-Jong Yeo, Hwan-Jin Choi, Mincheol Kim, Min-Gab Bog, Wonkyun Lee The International Journal of Advanced Manufacturing Technology.2024; 135(11-12): 5391. CrossRef
In the optical systems field, key components such as spectroscopic elements often require the use of optical materials with high-refractive indices to achieve miniaturization and lightweight characteristics. However, high-refractive index optical materials have low machinability due to their brittle characteristic. In this study, we investigated the changes in surface characteristics during precision pattern machining of high-refractive index materials; specifically, a low fracture toughness, for use in grating spectroscopic elements. The experiment involved diamond turning for the primary machining, and for the secondary pattern machining, the tool rake angle, tool feed rate, and depth of cut were set as variable conditions. Surface roughness measurements and surface quality analyses were carried out using a white-light interferometer and tool microscopy. The results provide insights into the influence of conditions on the surface properties during the machining of high-refractive index materials for grating spectroscopic components. Under the machining conditions with a tool rake angle of -65o, tool feed rate of 5,000 mm/min, and a depth of cut 10 nm, the surface roughness of Ra 8.0 nm was achieved. Based on these findings, we plan to conduct further research on the mechanical fabrication of the blaze angle for grating spectroscopic components.
Recently, the demand for micromachining of hard materials has been increasing. Machining microholes, grooves, and structures in hard materials such as tungsten carbide is very difficult. In this study, the machining characteristics of a microdisk tool for microgroove machining of tungsten carbide were studied. Microtools made of polycrystalline diamond (PCD) were fabricated using wire electrical discharge grinding (WEDG) to machine high-hardness tungsten carbide. Rectangular and V-shaped disk tools were fabricated by WEDG with controlled wire paths. In the micro grooving of tungsten carbide, the effects of capacitance and feedrate on the surface roughness of microgrooves and the wear of disk tools were studied. As the capacitance and feed rate decreased, the surface roughness decreased and no significant wear was observed in the PCD tool. However, an increase in tool edge radius of several micrometers was observed.
Citations
Citations to this article as recorded by
Micro Hole Machining Characteristics of Glassy Carbon Using Electrical Discharge Machining (EDM) Jae Yeon Kim, Ji Hyo Lee, Bo Hyun Kim Journal of the Korean Society for Precision Engineering.2025; 42(4): 325. CrossRef
Prediction of Machining Conditions from EDMed Surface Using CNN Ji Hyo Lee, Jae Yeon Kim, Dae Bo Sim, Bo Hyun Kim Journal of the Korean Society for Precision Engineering.2024; 41(11): 865. CrossRef
Silicon carbide (SiC) is chemically stable, highly heat-resistant, and resistant to thermal shock. SiC having excellent characteristics in a high temperature and high voltage environment is used in high-power semiconductors, highprecision mechanical devices, optical components, etc. As it is used in various industries, there is a growing demand for processing fine holes or grooves in silicon carbide. In this study, micro holes and grooves were machined on 4HSiC and sintered SiC using electrical discharge machining (EDM). Silicon carbide which has very high hardness can be easily processed by EDM as compared with mechanical processes. As a tool material, a polycrystalline diamond (PCD) which has high wear resistance was used and a micro tool of a diameter of 100 μm was fabricated by wire electrical discharge grinding (WEDG). In the EDM of SiC, the machining characteristics such as surface roughness, discharge gap, and tool wear were investigated.
Citations
Citations to this article as recorded by
Micro Hole Machining Characteristics of Glassy Carbon Using Electrical Discharge Machining (EDM) Jae Yeon Kim, Ji Hyo Lee, Bo Hyun Kim Journal of the Korean Society for Precision Engineering.2025; 42(4): 325. CrossRef
Prediction of Machining Conditions from EDMed Surface Using CNN Ji Hyo Lee, Jae Yeon Kim, Dae Bo Sim, Bo Hyun Kim Journal of the Korean Society for Precision Engineering.2024; 41(11): 865. CrossRef
Vitreous carbon (VC) is an excellent material for glass molding due to its high hot hardness and low adhesion to glass materials. As a low-cost VC micro/nano mold fabrication method, carbonization of replicated Furan precursor has been investigated for various glass molded micro/nano optical and fluidic devices. One of the critical issues identified in the method is the substantial pyrolysis shrinkage (~22%) during the carbonization process. In this study, a method of minimizing pyrolysis shrinkage by adding VC powder to the initial Furan resin mixture was investigated. The mixing ratio of Furan resin, initiator, and ethanol was experimentally optimized for each VC powder mixing ratio, and the effects of the VC powder mixing ratio on the pyrolysis shrinkage of VC mold were examined. As the VC powder mixing ratio increased from 0% to 40%, we observed a reduction in the shrinkage ratio from 22.18% to 12.89% aligning closely with theoretical expectations.
With the recent development of 3D printing technology, various 3D printing materials have been developed and used. To utilize 3D-printed products with mechanical parts, studies on friction and wear characteristics according to relative motion between materials are required. However, tribology studies on 3D-printed materials are limited compared to those of the existing materials for mechanical parts. In this study, the frictional and wear characteristics are identified through a reciprocating wear test in non lubricated conditions between the Polylactic Acid (PLA) and Polyethylene Terephthalate Glycol (PETG) printed in the Fused Deposition Modeling (FDM) method. In the wear test between the same materials, the friction coefficient and wear rate were higher in the PLA than in the PETG, and PLA was deposited on the block due to high frictional heat. In the wear test of the PLA block and PETG bump, the wear of the PLA block decreased compared to the wear test between the same materials, but the wear of the PETG bump tended to increase. Therefore, it seems that the 3D-printed PETG may be more advantageous in terms of friction and wear than 3D-printed PLA during relative movement in a non lubricating condition.
Citations
Citations to this article as recorded by
Tribological Properties of Fused Deposition Modeling-Printed Polylactic Acid and PLA-CF: Extrusion Temperature and Internal Structure Paweł Zawadzki, Justyna Rybarczyk, Adam Patalas, Natalia Wierzbicka, Remigiusz Łabudzki, Băilă Diana, Fodchuk Igor, Bonilla Mirian Journal of Tribology.2026;[Epub] CrossRef
Artificial Intelligence Technologies and Applications in Additive Manufacturing Selim Ahamed Shah, In Hwan Lee, Hochan Kim International Journal of Precision Engineering and Manufacturing.2025; 26(9): 2463. CrossRef
Among chemical coating methods, deposition using electrostatic spraying is commonly employed in coating processes to control the deposition rate, thickness, and properties of the formed materials. In this study, we considered the following variables: ring electrode, ring diameter (RD), ring voltage (RV), and nozzle-ring distance (NTR). Through experiments, we determined the atomization mode applied voltage, Sauter mean diameter (SMD), and SMD standard deviation of the nozzle. Additionally, we derived the voltage intensity and electric field along the axial direction using ANSYS maxwell to identify the optimal ring electrode atomization conditions.