Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

  • HOME
  • BROWSE ARTICLES
  • Previous issues
10
results for

Previous issues

Article category

Keywords

Authors

Previous issues

Prev issue Next issue

Volume 37(5); May 2020

Articles
Experimental Research on Running Stability of Swing Motion Bogie System for a Freight Car
Jeong Hwan Choi, Hae Young Ji, Jin Kyu Park, Seung Gie Jeon
J. Korean Soc. Precis. Eng. 2020;37(5):321-330.
Published online May 1, 2020
DOI: https://doi.org/10.7736/JKSPE.019.161
The swing motion bogie system for a freight car is more effective regarding the vibration damping effect than other freight car bogie systems while operating, and it is a bogie system that can travel up to 120 km/h despite being a freight car. Imported in 2006 in Korea and operated for more than 10 years in the domestic railway environment, the performance and maintenance efficiency have been proven compared to the existing welding bogies. As a result, the domestic demand will continue increasing in the future, but it is now dependent on overseas imports. In the long term, it is expected to cause problems such as loss of foreign currency and delay in procurement during maintenance. For this reason, development of the localization of the swing motion bogie system is underway, and it requires accurate performance analysis and validation of operating behavior characteristics because the bogie system is one of the main devices of the railway vehicles. Thus, in this study, we could confirm the suitability of the swing motion bogie system in the domestic operating environment based on the analysis of the operating behavior characteristics, the validation at the laboratory environment, and the operating test on the track.
  • 5 View
  • 0 Download
Unscented Kalman Filter Based 3D Localization of Outdoor Mobile Robots
Woo Seok Lee, Min Ho Choi, Jong Hwan Lim
J. Korean Soc. Precis. Eng. 2020;37(5):331-338.
Published online May 1, 2020
DOI: https://doi.org/10.7736/JKSPE.019.066
This paper proposes a practical method, for evaluating 3-D positioning of outdoor mobile robots using the Unscented Kalman Filter (UKF). The UKF method does not require the linearization process unlike conventional EKF localization, so it can minimize effects of errors caused by linearization of non-linear models for position estimation. Also, this method does not require Jacobian calculations difficult to calculate in the actual implementation. The 3-D position of the robot is predicted using an encoder and tilt sensor, and the optimal position is estimated by fusing these predicted positions with the GPS and digital compass information. Experimental results revealed the proposed method is stable for localization of the 3D position regardless of initial error size, and observation period.

Citations

Citations to this article as recorded by  Crossref logo
  • Research on Parameter Compensation Method and Control Strategy of Mobile Robot Dynamics Model Based on Digital Twin
    Renjun Li, Xiaoyu Shang, Yang Wang, Chunbai Liu, Linsen Song, Yiwen Zhang, Lidong Gu, Xinming Zhang
    Sensors.2024; 24(24): 8101.     CrossRef
  • A Study on Improving the Sensitivity of High-Precision Real-Time Location Receive based on UWB Radar Communication for Precise Landing of a Drone Station
    Sung-Ho Hong, Jae-Youl Lee, Dong Ho Shin, Jehun Hahm, Kap-Ho Seo, Jin-Ho Suh
    Journal of the Korean Society for Precision Engineering.2022; 39(5): 323.     CrossRef
  • 8 View
  • 0 Download
  • Crossref
Design of Prosthetic Robot Hand and Electromyography-Based Hand Motion Recognition
Ho Myoung Jang, Jung Woo Sohn
J. Korean Soc. Precis. Eng. 2020;37(5):339-345.
Published online May 1, 2020
DOI: https://doi.org/10.7736/JKSPE.019.138
In this paper, a prosthetic robot hand was designed and fabricated and experimental evaluation of the realization of basic gripping motions was performed. As a first step, a robot finger was designed with same structural configuration of the human hand and the movement of the finger was evaluated via kinematic analysis. Electromyogram (EMG) signals for hand motions were measured using commercial wearable EMG sensors and classification of hand motions was achieved by applying the artificial neural network (ANN) algorithm. After training and testing for three kinds of gripping motions via ANN, it was observed that high classification accuracy can be obtained. A prototype of the proposed robot hand is manufactured through 3D printing and servomotors are included for position control of fingers. It was demonstrated that effective realization of gripping motions of the proposed prosthetic robot hand can be achieved by using EMG measurement and machine learning-based classification under a real-time environment.

Citations

Citations to this article as recorded by  Crossref logo
  • Development of a Caterpillar-Type Walker for the Elderly People
    Yeon-Kyun Lee, Chang-Min Yang, Sol Kim, Ji-Yong Jung, Jung-Ja Kim
    Applied Sciences.2021; 12(1): 383.     CrossRef
  • Remote Control of Mobile Robot Using Electromyogram-based Hand Gesture Recognition
    Daun Lee, Jung Woo Sohn
    Transactions of the Korean Society for Noise and Vibration Engineering.2020; 30(5): 497.     CrossRef
  • 8 View
  • 0 Download
  • Crossref
Design and Verification of Multi-Step Blade Tip Clearance Control System for Large Gas Turbine Using Hydraulic Pressure
Yeong Chun Kim, Seok In Cho, Yang Uk Cho, Heui Joo Park
J. Korean Soc. Precis. Eng. 2020;37(5):347-353.
Published online May 1, 2020
DOI: https://doi.org/10.7736/JKSPE.019.113
In the gas turbine, the clearance between the blade tip of the rotor and the inside of the stationary casing varies depending on the rotation of the rotor and the heat output of the combustor. Accordingly, the assembly clearance is determined, and the leakage of the gas occurs because of the gap during operation, affecting the efficiency of the system. Thus, designers use a variety of techniques to optimize this clearance, a typical method that reduces the relative variation of the clearance using heating and cooling mechanisms. In this study, we developed a method to control the blade tip clearance through the axial movement of the inclined blade without using heating and cooling mechanisms. Recently, we designed an advanced blade tip clearance control system that can control multi-step, not on-off control, to apply to large gas turbines developed by Doosan. The designed system is hydraulic and can be used with a maximum thrust of 100 tons, and the desired displacement can be moved in multiple stages as required. We have completed the reliability verification of the entire lifecycle level and applied it to the newly developed gas turbine.
  • 5 View
  • 0 Download
Effect of Thermal Conductivity of Coil Insulator Material on the Temperature Variation of High Voltage Motor
Jaehyun Park, Seung Ho Paek, Hyun Woo Lee, Heesung Park
J. Korean Soc. Precis. Eng. 2020;37(5):355-360.
Published online May 1, 2020
DOI: https://doi.org/10.7736/JKSPE.019.119
It has been an on-going issue to develop a high voltage motor with high capacity and reliability. In this study, we investigated the effective coil insulator materials in terms of thermal conductivity. To quantify the contribution of the coil insulator material, two different motors with and without the cooling structure were numerically studied. Based on the measured thermal conductivity of six different coil insulators, we have achieved the effectiveness of thermal conductivity. Consequently, the high voltage motor can be developed with the proposed effectiveness of thermal conductivity regarding coil insulator materials. Our study of fundamental material characteristics will be beneficial in enhancing thermal management technology of a high voltage motor.

Citations

Citations to this article as recorded by  Crossref logo
  • Improved thermal conductivity of anticorona insulation paint for high-voltage motor application
    Xia Zhao, Hui Zhang, Yongxin Sun, Tiandong Zhang
    Journal of Materials Science: Materials in Electronics.2023;[Epub]     CrossRef
  • 8 View
  • 0 Download
  • Crossref
Quantitative Metallographic Analysis of GCr15 Microstructure Using Mask R-CNN
Reuben Agbozo, Wuyin Jin
J. Korean Soc. Precis. Eng. 2020;37(5):361-369.
Published online May 1, 2020
DOI: https://doi.org/10.7736/JKSPE.019.144
Quantitative metallographic analysis is significant in predicting the mechanical and physical properties of materials. This paper presents an alternate method to the approach used by Zhao, et al. (2016) in the paper “Metallographic Quantitative Analysis for GCr15 by Digital Image Process” in identifying carbide particles present within GCr15 bearing steel. GCr15 bearing steel is classified as a quality alloy; high carbon, chromium and manganese. This study quantitated the proportion of carbide particles in GCr15 bearing steel microstructure using the Mask Region-Based Convolution Neural Networks (Mask R-CNN) approach. The approach precisely located carbide particles, using bounding box indicators based on the concept Region of Interest (ROI) as used in the Mask R-CNN approach and masked the carbide particles within the ROIs. With this approach, we accurately located and masked more than 90% of the target particles, labeled and calculated the area and perimeter of each corresponding blob within the microstructure of GCr15.

Citations

Citations to this article as recorded by  Crossref logo
  • Region versus query based instance segmentation models: application to the estimation of aggregated TiO2 particles size distribution measured by SEM
    Paul Monchot, Loïc Coquelin, Nicolas Fischer
    Machine Learning: Science and Technology.2025; 6(2): 020502.     CrossRef
  • Design of novel interpretable deep learning framework for microstructure–property relationships in nickel and cobalt based superalloys
    Aditya Gollapalli, Abhishek Kumar Singh
    Computational Materials Science.2025; 253: 113854.     CrossRef
  • Phase classification of high entropy alloys with composition, common physical, elemental-property descriptors and periodic table representation
    Shuai LI, Jia YANG, Shu LI, Dong-rong LIU, Ming-yu ZHANG
    Transactions of Nonferrous Metals Society of China.2025; 35(6): 1855.     CrossRef
  • Automatic Detection of Dendritic Microstructure Using Computer Vision Deep Learning Models Trained with Phase Field Simulations
    A. Viardin, K. Nöth, C. Pickmann, L. Sturz
    Integrating Materials and Manufacturing Innovation.2025; 14(1): 89.     CrossRef
  • Metallurgical microstructure classification using CNN: A comprehensive study on heat treatment analysis for steel
    N.P. Wankhade, V.P. Sale, R.S. Yadav, P.C. Jikar, S.R. Gadgekar, N.B. Dhokey
    Materials Today: Proceedings.2024;[Epub]     CrossRef
  • Deep Learning Methods for Microstructural Image Analysis: The State-of-the-Art and Future Perspectives
    Khaled Alrfou, Tian Zhao, Amir Kordijazi
    Integrating Materials and Manufacturing Innovation.2024; 13(3): 703.     CrossRef
  • Hardness prediction of high entropy alloys with periodic table representation of composition, processing, structure and physical parameters
    Shuai Li, Shu Li, Dongrong Liu, Jia Yang, Mingyu Zhang
    Journal of Alloys and Compounds.2023; 967: 171735.     CrossRef
  • Transfer Learning in Inorganic Compounds’ Crystal Structure Classification
    Hanan Ahmed Hosni Mahmoud
    Crystals.2023; 13(1): 87.     CrossRef
  • BlobCUT: A Contrastive Learning Method to Support Small Blob Detection in Medical Imaging
    Teng Li, Yanzhe Xu, Teresa Wu, Jennifer R. Charlton, Kevin M. Bennett, Firas Al-Hindawi
    Bioengineering.2023; 10(12): 1372.     CrossRef
  • Image Analysis Technology in the Detection of Particle Size Distribution and the Activity Effect of Low‐Silicon Copper Tailings
    Yuxiang Zhao, Xinzhong Liu, Biwen Liu, Qian Zhang, Dongdong Huan, Chenhui Qiu, Haibin Lv
    Wireless Communications and Mobile Computing.2021;[Epub]     CrossRef
  • Application of deep transfer learning to predicting crystal structures of inorganic substances
    Shuo Feng, Huiyu Zhou, Hongbiao Dong
    Computational Materials Science.2021; 195: 110476.     CrossRef
  • Adoption of Image-Driven Machine Learning for Microstructure Characterization and Materials Design: A Perspective
    Arun Baskaran, Elizabeth J. Kautz, Aritra Chowdhary, Wufei Ma, Bulent Yener, Daniel J. Lewis
    JOM.2021; 73(11): 3639.     CrossRef
  • 8 View
  • 0 Download
  • Crossref
A Study on Thermal and Flow Characteristics of an Injection Mold Using a Detachable Core Module with Embedded Heating
Seung-Ah Oh, Young-Bae Ko, Baeg-Soon Cha, Keun Park
J. Korean Soc. Precis. Eng. 2020;37(5):371-379.
Published online May 1, 2020
DOI: https://doi.org/10.7736/JKSPE.020.002
The purpose of this study was to develop an efficient mold heating technology by an embedded heating unit. To localize the heating effect in the mold core and prevent heat transfer to surrounding mold plates, the core module with embedded heating unit was assembled to a mold plate in a detachable manner. The detachable core module was then separated from the mold plate when the mold was opened, and thus could be rapidly heated by the embedded heater. The heated core contacted with the mold plate when the mold was closed, and could be cooled by heat conduction to the mold plate of which thermal inertia was much larger than that of the core module. To verify thermal efficiency of the proposed structure, heat transfer simulation was performed with an experimental validation. Mold filling simulation was also performed to investigate the effect of mold heating on improving flow characteristics through a thin and narrow channel. Injection molding experiments were also conducted by adopting the proposed embedded heating module.

Citations

Citations to this article as recorded by  Crossref logo
  • Analysis of Rapid Heating Performance in Multi-Layered Injection Mold System for CNT Surface Heating Element Application
    Hyeon Min Lee, Young Bae Ko, Woo Chun Choi
    Journal of the Korean Society for Precision Engineering.2022; 39(7): 461.     CrossRef
  • Energy Saving of Rubber Forming by Direct Heating Press Mold Development
    Young Tae Cho
    Journal of the Korean Society for Precision Engineering.2022; 39(7): 485.     CrossRef
  • A Study on Conformal Heating of Curved Mold Using CNT Film Heater
    Seo-Hyeon Oh, Eun-Ji Jeon, Hyeon-Min Lee, Yeong-Bae Ko, Keun Park
    Journal of the Korean Society for Precision Engineering.2022; 39(7): 469.     CrossRef
  • Conformal Mold Heating and Cooling Using a Carbon Nanotube Film Heater and Additively Manufactured Cellular Metamaterial
    Jeong-Hee You, Jun-Won Lee, Seo-Hyeon Oh, Keun Park
    International Journal of Precision Engineering and Manufacturing-Green Technology.2022; 9(6): 1463.     CrossRef
  • A Study on the Heat Transfer Characteristics of a Glass Lens Mold Heating Block according to Design of a Heat Radiating Block
    Bo Min Seo, Dong Yean Jung, Keun Park, Chang Yong Park
    Journal of the Korean Society for Precision Engineering.2022; 39(7): 493.     CrossRef
  • 8 View
  • 0 Download
  • Crossref
Development of DLP 3D Printer with Multiple Composite Materials
SoRee Hwang, JongWon Lee, SoHyang Lee, DaeGi Hong, MinSoo Park
J. Korean Soc. Precis. Eng. 2020;37(5):381-388.
Published online May 1, 2020
DOI: https://doi.org/10.7736/JKSPE.019.128
Since most commercialized DLP 3D printers fabricate 3D structures by sinking materials to Vat using a bottom-up method, it is difficult to use various materials simultaneously and there are many restrictions on printing composite materials. Especially, composite resin mixed with various functional powders in photo curable resin generally has high viscosity, causing difficult material flow in the bottom-up method when using Vat. Additionally, most of the previously presented methods for fabricating multi-material structure use individual curing for each material, so the adhesion force at the contact surface is less than 50% compared to single material. Thus, in this paper, we propose a new type of DLP 3D printer that combines Material Extrusion and the DLP system. The proposed equipment can supply high viscosity composite material resins to a specific area to cure various materials simultaneously. This method will enable fabrication of multiple composite material structures with sufficient adhesion force. The tensile test will be performed to verify suitability of the proposed method.

Citations

Citations to this article as recorded by  Crossref logo
  • Evaluation of Bond Strength in Multi-Material Specimens Using a Consumer-Grade LCD 3D Printer
    Shunpei Shimizu, Masaya Inada, Tomoya Aoba, Haruka Tamagawa, Yuichiro Aoki, Masashi Sekine, Sumihisa Orita
    Journal of Manufacturing and Materials Processing.2025; 9(10): 332.     CrossRef
  • Development of a Material Mixing Extrusion Type Chocolate 3D Printer
    MinSoo Park, HyungJik Jeong, JaeHyuek Moon, JungMuk Lim
    Journal of the Korean Society for Precision Engineering.2021; 38(2): 145.     CrossRef
  • Dimensional Characteristics of 3D Printing by FDM and DLP Output Methods
    Myung-Hwi Jung, Jeong-Ri Kong, Hae-Ji Kim
    Journal of the Korean Society of Manufacturing Process Engineers.2021; 20(1): 66.     CrossRef
  • Property Analysis of Photo-Polymerization-Type 3D-Printed Structures Based on Multi-Composite Materials
    So-Ree Hwang, Min-Soo Park
    Applied Sciences.2021; 11(18): 8545.     CrossRef
  • 6 View
  • 0 Download
  • Crossref
Deep Learning-Based Object Detection and Target Selection for Image-Based Grasping Motion Control
Hae June Park, Min Young Kim, Joonho Seo
J. Korean Soc. Precis. Eng. 2020;37(5):389-394.
Published online May 1, 2020
DOI: https://doi.org/10.7736/JKSPE.019.158
Hands perform various functions. There are many inconveniences in life without the use of hands. People without the use of hands wear prostheses. Recently, there have been many developments and studies about robotic prosthetic hands performing hand functions. Grasping motions of robotic prosthetic hands are integral in performing various functions. Grasping motions of robotic prosthetic hands are required recognition of grasping targets. A path toward using images to recognize grasping targets exists. In this study, object recognition in images for grasping motions are performed by using object detection based on deep-learning. A suitable model for the grasping motion was examined through three object detection models. Also, we present a method for selecting a grasping target when several objects are recognized. Additionally, it will be used for grasping control of robotic prosthetic hands in the future and possibly enable automatic control robotic prosthetic hands.

Citations

Citations to this article as recorded by  Crossref logo
  • A Study on Defect Detection Model of Bone Plates Using Multiple Filter CNN of Parallel Structure
    Song Yeon Lee, Yong Jeong Huh
    Journal of the Korean Society for Precision Engineering.2023; 40(9): 677.     CrossRef
  • 7 View
  • 0 Download
  • Crossref
Journal of the Korean Society for Precision Engineering Vol.37 No.5 목차
J. Korean Soc. Precis. Eng. 2020;37(5):397-398.
Published online May 1, 2020
  • 3 View
  • 0 Download