A dangerous event occurred at the field industry and mechanical system. At developed by SUNGGOKNANOTECH corp. a R-L clutches of a small and high capacity serves safety device from a variety environment of mechanical system, it permits transmission of driving torque from input to output shaft in both directions of rotation, but restrains any feedback torque of the driven load from rotating the output shaft in either direction. This study was carried out to demonstrate through finite element method and durability estimation for safety of the R-L clutches without sliding during the engagement process. As results, we organized about endurance test method when applied rated torque.
This paper has been focused in developing of plastic lens with ultra-precision and low birefringence ability using by injection molding simulation tools. The simulation tools, 3D-Timom™ and Asu-Mold™ were applied to visualize indirectly the flow pattern of melted polymer enter the mould and the simulation results are verified as compared with the experimental results. Birefringence and polarized light generated in injection molding process was also calculated for each injection conditions and compared with .the pictures of experimented optical lens go through the polarized light plates device. A spherical radius of plastic optical lens transcribed from profile of mould core surface was measured to estimate the geometrical accuracy for the each injection conditions. It is confirmed that the simulation results about flow pattern and polarized light area coincided in experimental results. It is known that increasing in thickness shrinkage at center of lens, the spherical radius is larger from comparing the graph measured spherical radius and the thickness shrinkage at center of lens.
This paper presents the experimental results to analyze the atomization characteristics and environmental impact of cutting fluid in grinding process. Grinding is a major machining process to improve surface quality with different machining mechanism which is compared with turning or milling process. The environmental impact due to aerosol generation via grinding process is a major concern associated with environmental consciousness. Experimental results show that the generated fine aerosol which particle size less than 10 micron appears near working zone under given operational conditions. The aerosol concentration is much higher enough to affect human health risk with its generated aerosol quantities. This study can be provided a basic knowledge for further research of environmental consciousness machining development.
Many researches have been focused on optimal designs of a po Ie shape in order to reduce cogging torques, which are generated between permanent magnets and slots. In this paper, an adaptive controller is proposed for reducing the effect of cogging torques in servo motors. The controller stabilizes the control system and shows an excellent trajectory tracking performance compared to the conventional PD controller.
In this paper, the pole placement controller based on the Robust Internal-loop Compensator (RIC) structure, which has inherent structural equivalence to disturbance observer, is proposed to control a linear positioning system. This controller has the advantage to easily select controller gains by using pole placement without loss of that of original RIC structure. The principal is to construct the pole placement controller for a nominal internal model instead of unknown real plant. Using linear motion experiment showed the effectiveness of the proposed controller.
Most domestic fossil power plants have exceeded 100,000 hours of operation with the severe operating condition. Among the critical components of fossil power plant, high temperature steam pipe systems have had a many problems and damage from unstable displacement behavior because of frequent start up and shut down. In order to prevent the serious damage and failure of the critical pipe system in fossil power plants, 3-dimensional displacement measurement system was developed for the on-line monitoring. Displacement measurement system was developed with a use of a LVDT type sensor and two rotary encoder type sensors. This system was installed and operated on the real power plant successfully.
Magnetic flywheel system utilizes a magnetic bearing, which is able to support the shaft without mechanical contacts, and also it is able to control rotational vibration. Magnetic flywheel system is composed of position sensors, a digital controller, actuating amplifiers, an electromagnet and a flywheel. This work applies the neuro-fuzzy control algorithm to control the vibration of a magnetic flywheel system. It proposes the design skill of an optimal controller when the system has structured uncertainty and unstructured uncertainty, i.e. it has a difficulty in extracting the exact mathematical model. Inhibitory action of vibration was verified at the specified rotating speed. Unbalance response, a serious problem in rotating machinery, is improved by using a magnetic bearing with neuro-fuzzy algorithm.
Conventional robot manipulators actuated by motors with the speed reducer such as the harmonic drive have weakness in the load capacity, since the speed reducer does not have enough strength. To improve this, a new type of robot actuator based on the four-bar-link mechanism driven by the ball screw was constructed. Also, a new type of revolute robot manipulator composed of the developed actuators was developed. But, modelling errors occur due to the off-set from the nominal model since the exact modeling of the complex inertia variation of the four-bar-link actuator is very difficult. To control the proposed robot along the prescribed trajectory, a sliding mode control algorithm was applied with compensation function for the modeling errors. To show performance of the proposed controller, a computer simulation was performed, and its results was presented.
In case of fine machining processes, the cutting state monitoring by a skilled operator is impossible because the physical changes generated during fine machining are very weak. To realize the high efficient and precise fine machining, it is necessary to develop the sensor based monitoring system which is able to detect the fine changes of cutting state. In this paper, the fine acoustic emission monitoring system is developed to monitor the state of the fine machining process. The developed system consists of the AE sensor and the AE signal processing unit. And this has the high-sensitivity and bandwidth which can detect fine AE signal generated during fine machining process. In order to investigate the feasibility of the developed system, evaluation experiments were performed in the fine fixed-abrasive machining processes such as polishing and glass ferrule slicing. Experimental results show that the developed monitoring system possesses an excellent real-time monitoring capability at fine machining processes.
There are many types of walking robots in the world. For dynamic walking of the robots it is necessary to keep its dynamic stability. The dynamic stability is influenced by the position of ZMP (zero moment point). In this paper we study the control of the ZMP position of walking robot. For experiment we developed a quadruped robot and analyzed the dynamic stability of the robot. Developed robot has 2 joints at each leg and WBO (weight balancing oscillator) on the body of the robot. The WBO is designed to move linearly from side to side when the robot walks dynamically. Walking test was performed to verify the validity of the proposed methods. Especially we showed that the dynamic stability of the robot can be improved without sacrifice of the walking speed by control the WBO.