Bearings having a small clearance during normal operation are selected. In some cases, bearings having a negative clearance when mounted are selected, to generate internal stress which enables achieving various effects. This so-called preload can be applied only to rolling bearings and not sliding ones. The performance of bearings is greatly affected by the applied preload. Application of a heavy preload to enhance the stiffness at the spindle undermines the high-speed rotation performance. In contrast, when a light preload is applied for high speed rotation, the stiffness is undermined. Therefore, a variable preload method is required. This study aims to develop a variable preload device using a linear actuator of the ball screw type, and to perform the performance evaluation of the developed device. Our studies verified that the proposed device worked satisfactorily.
Citations
Citations to this article as recorded by
An Analytical Study on the Thermal-Structure Stability Evaluation of Mill-Turn Spindle with Curvic Coupling Choon-Man Lee, Ho-In Jeong Journal of the Korean Society of Manufacturing Process Engineers.2020; 19(1): 100. CrossRef
The latest preload technology of machine tool spindles: A review Choon-Man Lee, Wan-Sik Woo, Dong-Hyeon Kim International Journal of Precision Engineering and Manufacturing.2017; 18(11): 1669. CrossRef