In the field of construction automation, significant research efforts continue to focus on replacing human labor; however, the varied and dynamic nature of construction sites still requires human intervention. The high task intensity in construction sites, particularly in lifting heavy materials, frequently results in musculoskeletal disorders among workers. To address this issue, this paper proposes a lifting device to replace manual material transportation through an opening between floors. The lift is designed with a gear-constrained double parallelogram mechanism to enable straight vertical movement. Moreover, a crank-rocker mechanism is incorporated to improve efficiency in repetitive tasks, reduce the required driving torque, and simplify control complexity. Additionally, this study introduces a passive gravity compensation mechanism that employs springs and cables, tailored to the lifting process, to enhance payload capacity and stabilize actuation. Through the integration of these mechanisms, the necessary motor capacity and control costs are significantly reduced. The effectiveness of the device is validated by actuation experiments with a fabricated prototype.
Citations
Citations to this article as recorded by
Complete gravity balancing of the general four-bar linkage using linear springs Chin-Hsing Kuo Mechanism and Machine Theory.2025; 214: 106140. CrossRef
In Korea, water spraying to suppress the dust during building dismantling operations has been done manually by human laborers, considered extremely dangerous since it often causes fatal accidents. Abroad, however, water spraying machines have been developed and used in construction sites instead of workers to prevent such serious industrial accidents. In this study, the first domestic water spraying machine is suggested. Since the spraying machine should have a novel dust tracking function, an optimal structure and mechanism should be designed to guarantee its motion performance. The motion for target tracking is achieved by the 2 DOF (Degrees of Freedom) structure comprising a linear and a rotary actuator. Then, the geometric analysis was performed to provide a sufficient kinematic workspace. Through the dynamic performance simulation, the optimal actuator capacities could be selected to generate an appropriate acceleration. The geometric and dynamic performance was evaluated by the extensive motion experiments. With this study, it is expected that an advanced water spraying machine can be developed only with domestic technologies to protect construction laborers from potentially dangerous accidents.
Citations
Citations to this article as recorded by
Excavator Posture Estimation and Position Tracking System Based on Kinematics and Sensor Network to Control Mist-Spraying Robot Sangwoong Lee, Hyunbin Park, Baeksuk Chu IEEE Access.2022; 10: 107949. CrossRef