In this paper, we propose an autonomous stair-driving system for the stable traversal of stairs by a tracked mobile robot operating in indoor disaster environments. Before developing the system, we conduct dynamic simulations to analyze the requirements for the robot to climb stairs. Simulations are performed under various initial conditions, and based on a detailed analysis of the results, we derive the necessary conditions for the robot's ascent. Using these requirements, we design the autonomous stair-driving system, which includes three main components: stair approach, stair alignment, and stair traversal. First, during the approach stage, we present a strategy for recognizing stairs using an object detection algorithm and generating control inputs for the stair approach motion. Next, in the alignment process, we outline an image processing sequence that extracts the edge contour of the stairs and a method for generating control inputs from the combined contour. Finally, in the traversal sequence, we describe the strategy for driving up the stairs. Additionally, we introduce an integrated ROS system to ensure the sequential execution of each strategy. We also verify the effectiveness of the individual strategies and demonstrate the capability of the proposed system through experiments using mock-up stairs and tracked robots.
In highly mobile workplaces, wearable walking assistant robots can reduce muscle fatigue in the lower extremities of workers and increase energy efficiency. In this study, walking efficiency according to the development of an ultralight wearable hip-assist robot for industrial workers was verified. Five healthy adult males participated in this study. Their muscle fatigue and energy consumption were compared with and without the robot while walking on a flat treadmill and stairs. When walking on the treadmill while wearing the robot, muscle fatigue in the rectus femoris and gastrocnemius decreased by 90.2% and 37.7%, respectively. Oxygen uptake and energy expenditure per minute also decreased by 8.9% and 13.1%, respectively. When climbing stairs while wearing the robot, fatigue of the tibialis anterior, semitendinosus, and gastrocnemius muscles decreased by 18.2%, 33.3%, and 63.6%, respectively. Oxygen uptake and energy expenditure per minute also decreased by 3.6% and 3.7%, respectively. Although wearing a hip-assist robot could reduce muscle fatigue and use metabolic energy more efficiently, it is necessary to further increase the energy efficiency while climbing stairs. This study is intended to provide basic data to improve the performance of robots.
Climbing stairs places a greater load on lower limb joints compared to walking on level ground. Variations in anatomical structures and muscle characteristics between genders suggest potential differences in the distribution of required mechanical work among the three lower limb joints. This study aimed to identify gender disparities in the allocation of mechanical work to lower limb joints during stair climbing. A total of thirty-six adults (equally divided between men and women) participated in the study. Participants ascended stairs equipped with force plates at their comfortable speeds, while motion was captured using nine cameras. Inverse dynamics analysis was employed to calculate the mechanical work performed by each joint during four phases of stance: weight acceptance, pull-up, forward continuation, and push-up. Male participants exhibited significantly higher mechanical work than females at the hip and ankle joints (p < 0.05) from the 1st- 3rd phases and the 2nd phase, respectively. Conversely, female subjects displayed greater knee joint work during the 2nd- 3rd phases (p < 0.05). Notably, a pronounced gender difference was observed during the 2nd pull-up phase, where body mass is lifted by a single leg. These findings suggest that men and women employ distinct strategies in distributing mechanical work across lower limb joints.
The purpose of this study was to compare ankle joint loads (Linear and Angular Impulses) while descending the stairs and ramp. Ten young male subjects participated in this study. Stairs and ramp of identical slope (30 degrees) were custom-made to include force plates in the middle of pathways. Subjects descended the stairs and ramp at a comfortable speed and posture. The stance period was divided into three phases, weight acceptance (WA), single limb stance, and pre-swing. Three-directional impulses and their sum were derived from the reaction forces and moments at the ankle joint. Differences in impulse sums (Both Linear and Angular) between stairs and ramp were significant only in the early (WA) phase, whereas those of stairs were greater than the ramp. All subjects adopted forefoot strike strategy for the stairs and 80% of the subjects adopted rearfoot strike strategy for the ramp. An increase in the GRF and moment arm of the GRF at the ankle joint in case of forefoot strike may have contributed to the increase in the linear and angular impulse in the early phase of stair descent compared to ramp descent. The results are in agreement with the preference of ramp in the elderly.