External stores on low-speed rotorcraft are subjected to various external forces depending on the aircraft's operating conditions. While there are different types of external forces, this paper focuses on flight loads as defined by US defense specifications. Flight loads consist of static and dynamic loads. Static loads on aircraft external stores include inertial loads resulting from aircraft maneuvers and aerodynamic loads caused by the downward flow of the main wing. To define the inertial load, the inertial load factor on external stores was calculated, while the minimum analysis case for aerodynamic load was derived from trim analysis of rotorcraft blades. The critical design load diagram was developed by combining these factors, and ANSYS was utilized to analyze the structural robustness under static loads. Based on the characteristics of the main wing, a finite element analysis was conducted using a vibration profile tailored to the actual operating environment and an impact profile suitable for the impact conditions. Structural robustness was further assessed through actual tests. This analysis provides essential data for airworthiness certification, allowing for the safe installation of external stores on low-speed rotorcraft.