For the commercialization of polymer electrolyte membrane fuel cells (PEMFCs), it is essential to achieve high performance while improving the durability of the membrane electrode assembly. In particular, the durability of PEMFCs can be improved by adding radical scavengers, such as CeO2 (ceria), to the membrane. Though it is desirable to insert the ceria at the interface between the membrane and electrode, where the generated radical attack initiates, this increases interfacial resistance and ionic resistance, thereby inducing a probable reduction in initial performance, compared to that of a conventional membrane. Here, we developed modified Nafion electrolyte membranes with a spatially located patterned ceria containing Nafion ionomer to improve durability while minimizing performance degradation. The fabrication process includes an etching process to pattern the electrolyte membrane, and the ceria nanoparticle layer is selectively deposited by spray coating onto the membrane. The synergetic effect of the structural modification of the electrolyte membranes and the introduction of the functional ceria layer exhibited improved chemical durability, while maintaining the initial performance of the PEMFC.
Catheter tip forming is processing the tip at the distal end so that catheter can move smoothly through the geometrically complex vascular structure. This thermoforming process has a problem in that the polymer tube adheres to the outer surface of the mold. To resolve this problem, previous researchers have coated the outer surface of the mold with PTFE (Polytetrafluoroethylene), which has a low coefficient of friction. However, due to repeated use, the coating is detached and the polymer tube adheres to the mandrels again, and the mold is frequently replaced. Thus, in this study, three types of metal were electroplated on the surface of the mold in to realize the performance of the PTFE coating. To select the optimal plating material, Cr, Zn, and Ni were selected as candidate groups. Surface energy, adhesion force, and abrasion depth & volume were measured for performance comparison. As a result, Ni, which has similar surface properties to PTFE, and the best durability, was selected as the optimal material. Based on these results, we present Ni-plated mold that can replace PTFE.
Recently, the metal grid electrode drew attention as a flexible transparent conductive electrode for touch screen panels. In metal grid electrodes, various shapes of grid patterns were used to avoid the moiré phenomenon. In this study, we investigated the effects of the metal grid shapes - such as the honeycomb, diamond, and square - on the flexibility and durability of the metal grid film using an experimental and numerical analysis. The flexibility of the metal grid film was evaluated via the following: bending, cyclic bending fatigue and stretching tests; it was compared with the numerical stress analysis. In the bending test, the resistance of the honeycomb grid sample increased by 10% at a bending radius of 10 mm. On the other hand, the diamond grid showed almost no change in resistance up to a bending radius of 6 mm. When the substrate was stretched to 5%, many cracks appeared on the surface of the honeycomb pattern sample. On the other hand, no cracks were found in the diamond pattern sample. Therefore, the diamond pattern exhibited superior flexibility and durability to the honeycomb pattern. The numerical stress analysis also showed that the honeycomb pattern had the highest stress and the diamond pattern had the lowest stress during bending and stretching, which corresponded with the experimental results.
Grate Bars used in the sintering process of steel companies are exposed to high temperatures, oxidation and abrasive environments. To extend the lifetime of the Grate Bar, surface coating was applied to enhance performance at high temperatures and reinforce abrasion resistance. To evaluate mechanical and chemical properties of these coatings, various tests such as abrasion resistance testing and high temperature oxidation testing were conducted. Based on results of the tests, selection of applicable coating materials and techniques were obtained in the field.
Citations
Citations to this article as recorded by
Physico-chemical profile and corrosion mechanism of the failure grate bar from iron ore sintering process Xiaohui Fan, Xiaolong Wang, Zhiyun Ji, Xianwei Li, Min Gan, Yifan Wang, Haoxiang Zheng, Xuling Chen, Zengqing Sun, Xiaoxian Huang Journal of Materials Research and Technology.2022; 20: 428. CrossRef