In this study, a numerical analysis for predicting the internal pressure of the flight vehicle system with relief valve and N2-injection type cooler was conducted to operate the system safely in an unsteady-state condition. By adopting an incompressible ideal gas equation to computational domain at each time step, internal pressure was calculated without iteration. To increase the accuracy of the numerical analysis results, numerical model was correlated by modifying the volume of the computational domain. To modify the volume of computational domain, internal pressure along time was compared with experimental results. It showed good agreement within system operating time. Air mass flow rate at the relief valve is calculated by interpolating the performance curve data. For accurate and rapid calculation of the internal pressure in an unsteady-state condition, time step size convergence study was conducted additionally. By using a correlated numerical model, Pcr of the relief valve is conducted to remain the flight vehicle system within an internal pressure range of 0.6-2.0 atm, in each flight profile. Finally, specific Pcr of relief valve was applied to the system and the experimental results showed that the internal pressure remained in a safe range.