Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

2
results for

"다자유도"

Article category

Keywords

Publication year

Authors

"다자유도"

Articles
A Precision Line Profile Measurement Technique Using Multi Probe Error Separation Method
Sang Woo Baek, Nahm Gyoo Cho
J. Korean Soc. Precis. Eng. 2020;37(9):643-651.
Published online September 1, 2020
DOI: https://doi.org/10.7736/JKSPE.020.052
In this research, a precise on-machine line-profile measuring system that compensates for the motion-error from the linear-guide, which can influence the accuracy of the measurement of the profile was developed. For this purpose, the principle of measuring the system model was used to analyze the compensating motion error component for line-profile and 3 types of MPES method (Integration-Method, the Fourier-Model-Method, and the Sequential-Method). The multi-probe-error-separation-method (MPES) was applied to calculate the motion-error, which in turn was used to compensate for the measured linear-profile of the specimen. Lastly, the simulation conditions involving a multi-probe measurement system consisting of a reference-artifact, capacitive-sensor, and three displacement-sensors were designed and Monte-Carlo simulation was implemented for the evaluation of the 3 types of MPES method. Also, the simulation results obtained from the conventional measuring system and the proposed system were compared for the verification of the performance of the latter. Consequently, efficient compensation of the motion error appeared as possible and the applicability of the multi-probe measurement system was confirmed.
  • 6 View
  • 0 Download
Development of the Multi-DOF Myoelectric Hand Prosthesis with the Intuitive Control Algorithm
Sung Yoon Jung, Seung Gi Kim, DaeJin Jang, Shin Ki Kim, Se Hoon Park, Joo-Hyung Kim
J. Korean Soc. Precis. Eng. 2020;37(2):139-147.
Published online February 1, 2020
DOI: https://doi.org/10.7736/JKSPE.019.083
This paper proposes a myoelectric hand prosthesis with an easy control strategy to apply more conveniently with just two EMG sensors. The myoelectric hand prosthesis is composed of a multi-DOF finger mechanism, a controller, and an intuitive control algorithm. The developed hand prosthesis has 6-DOFs and can perform eight hand motions using the intuitive control algorithm. The proposed intuitive control algorithm classifies four grip motions and four gesture motions; we used the thumb position of the hand prosthesis and three EMG signals (Co-contraction, flexion, and extension) generated from the two EMG sensors. From the experimental results, we demonstrated that the proposed myoelectric hand prosthesis is applicable to amputees as a hand prosthesis.

Citations

Citations to this article as recorded by  Crossref logo
  • Development of Multifunctional Myoelectric Hand Prosthesis System with Easy and Effective Mode Change Control Method Based on the Thumb Position and State
    Sung-Yoon Jung, Seung-Gi Kim, Joo-Hyung Kim, Se-Hoon Park
    Applied Sciences.2021; 11(16): 7295.     CrossRef
  • Development of multi-degree-of-freedom hand prosthesis cover with sensory recognition
    Sung Yoon JUNG, Hyo Jong YOO, Seung Gi KIM, Se Hoon PARK, Jin Kuk PARK, Joo-Hyung KIM, Hyunjun SHIN
    Journal of Biomechanical Science and Engineering.2021; 16(2): 21-00076.     CrossRef
  • 8 View
  • 0 Download
  • Crossref