Chiefly, the metal wire-feed and laser additive manufacturing (AM) is a deposition process to produce larger mechanical parts required for aerospace, shipbuilding, automobile, and mold repair industries. The principal advantage of metal wire-feed AM is the high deposition rate compared to an assisted metal powder-feed AM, and metal powder-based fusion AM. During the wire-feed deposition process, the feed orientation is a critical parameter managed at all stages of processing. A better surface finish is attained when the melted wire flows smoothly through the process, and a wire feed direction that is utilized opposite to the deposition direction yields the best results. To improve the surface quality of metal 3D printing, we designed a rotating wire feeder, the feed direction of which varies with the direction of deposition; all free-form lines which thus exhibit identical surface qualities. Here, we use a rotating stage to orient the wire-feed direction according to the bead direction, a slip ring to supply electrical power to the feeder motor, and utilized two rotating channels on a plate to supply Ar gas and extract fumes safely during the processing stage. We evaluated the rotating wire feeder by building various parts as needed to the equipment.
Citations
Citations to this article as recorded by
Directed Energy Deposition (DED) Process: State of the Art Dong-Gyu Ahn International Journal of Precision Engineering and Manufacturing-Green Technology.2021; 8(2): 703. CrossRef
Estimation Method of Interpass Time for the Control of Temperature during a Directed Energy Deposition Process of a Ti–6Al–4V Planar Layer Bih-Lii Chua, Dong-Gyu Ahn Materials.2020; 13(21): 4935. CrossRef
Investigation of Influence of Laser Parameters and Powder Porosity on Thermal Characteristics in the Powder Bed of a SLM Process Kwang-Kyu Lee, Ho-Jin Lee, Hyun-Sik Kim, Dong-Gyu Ahn, Yong Son Journal of the Korean Society for Precision Engineering.2019; 36(8): 761. CrossRef
CAPP for 3D Printer with Metallic Wire Supplied from the Front Ho-chan Kim, Jae-gu Kim Journal of the Korean Society of Manufacturing Process Engineers.2018; 17(5): 155. CrossRef