Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

5
results for

"레일"

Article category

Keywords

Publication year

Authors

"레일"

Articles
This study investigated the effectiveness of tap water application in reducing nano-sized wear particles at a wheel-rail contact interface and its impact on air quality at different train velocities. Airborne wear particles (AWPs) were simulated using a twin-disk rig at 500, 800, and 1,300 RPM. Mass concentration of nano-sized wear particles was measured using a fast mobility particle sizer (FMPS) at a sampling frequency of 1 Hz. To simulate various vehicle dynamics and contact conditions, the slip rate was incrementally increased from 0 to 3%. During wet conditions, water was applied at a rate of 7 L/min. PM0.1 and PM0.56 under dry and wet conditions were compared to evaluate the method’s effectiveness. The analysis showed that the tap water application method improved the air quality by reducing PM0.56 by at least 74% and PM0.1 by approximately 80%. In conclusion, the water application method can effectively improve air quality by reducing generation of nano-sized wear particles. The train velocity affected the generation of nano-sized wear particles under both conditions.
  • 4 View
  • 0 Download
Rails are important facilities related to safe running of trains. When buckling occurs due to thermal expansion, serious safety accidents such as train derailment can occur. Currently, operating organizations are building expensive temperature monitoring systems and automatic watering devices. However, they have limitations for universalization due to their costs. Recently, long-term rail temperature reduction effect has been demonstrated by applying thermal insulation paint to rail surface. However, when coating the rail surface with paint, it increases the difficulty of detecting defects through nondestructive testing, which is one of the important elements of rail maintenance. To solve this problem, previous studies have proposed a detachable thermal insulation fabric by coating the surface of a fabric with thermal insulation paint and attaching a magnetic material. In this study, effect of thermal insulation performance according to manufacturing method was analyzed to derive the optimal performance of the previously developed thermal insulation fabric. Experiment results confirmed that paint weight increased when the roller method was used compared to the spray method with temperature reduction performance improved. Finally, the most efficient and optimal paint weight ratio was derived when the roller method was applied.
  • 4 View
  • 0 Download
Study on the Guide Rail Deformation in Linear Roller Bearings Subjected to External Loading
Jun-Ho Heo, Sun-Woong Kwon, Seong-Wook Hong
J. Korean Soc. Precis. Eng. 2019;36(1):79-87.
Published online January 1, 2019
DOI: https://doi.org/10.7736/KSPE.2019.36.1.79
Linear roller bearings are often used for linear positioning systems due to high load-carrying capacity, precision, and durability. In this paper, guide rail deformation of linear roller bearings under vertical and horizontal loads, has been experimentally investigated. An experimental system was made to measure displacement of the carriage and guide rail deformation of a bearing with varying load. Guide rail deformation inaccessible inside the carriage, was estimated by measured carriage displacement subtracted from calculated carriage displacement from a commercial program, that does not consider flexibility of guide rail and base. In addition to estimated deformation, guide rail deformation outside the bearing carriage was measured to make a complete guide rail deformation curve due to external loads. Results revealed deformations occurring in guide rail and base are significant, as to affect bearing accuracy. Thus, deformations in guide rail and base should be considered, to estimate stiffness and motion accuracy of linear roller bearing under external loading conditions.

Citations

Citations to this article as recorded by  Crossref logo
  • Study on Comparison of Friction Force between Ball- and Roller-LM Guides
    Hyeon Jeong Ra, Dong Wook Kim, Jun Man Lee, Han Seon Ryu, Jae Han Joung, Young Hun Jeong
    Journal of the Korean Society for Precision Engineering.2023; 40(11): 907.     CrossRef
  • 8 View
  • 0 Download
  • Crossref
Lightweight Design of the Stub Axle Using Topology Optimization
Jinsu Kim, Hong Seong Roh, Yeonjoo Min, Sung-Ho Hur, In Gwun Jang
J. Korean Soc. Precis. Eng. 2018;35(7):695-700.
Published online July 1, 2018
DOI: https://doi.org/10.7736/KSPE.2018.35.7.695
This study reviews the assumption that the lightweight design of commercial vehicles is significant from the aspect of the anticipated fuel consumption and environmental regulations that are consequently applicable to those vehicles. Generally speaking, it is noted that among the numerous trailer components, a stub axle, which is designed to independently operate as an integral part of trailer’s suspension, can play an important role in increasing the shipping capacity of a box trailer. For this reason, because each stub axle is comparatively a heavy unit in itself, and a total of six stub axles are mounted in a box trailer, the lightweight design of a stub-axle is noted as an essential factor to reduce the whole weight of a trailer. For a finite element analysis, an original CAD model is modified through removing a chamber, airbag, axle drum, bearing and pivot on a vehicle. In addition, the loading conditions are imposed considering three extreme driving conditions and the effects are studied when in the event of review of a fully loaded in a box trailer. A topology optimization is conducted to determine a lightweight design for minimizing compliance under these boundary conditions.

Citations

Citations to this article as recorded by  Crossref logo
  • Toward structure optimization for the mobile vehicle system based on multiconstraints
    Xin Zhao, Jie Li, Shunli Sun, Chongyang Han, Wenbo Zhu, Zhaokai He, Luxin Tang, Weibin Wu, Jiehao Li
    Robotic Intelligence and Automation.2023; 43(1): 75.     CrossRef
  • 2-D Topology Optimization of the Connection Part of the Electric Kickboard in Case of Front Collision
    Min Gyu Kim, Ji Sun Kim, Jung Jin Kim
    Journal of the Korean Society for Precision Engineering.2022; 39(11): 841.     CrossRef
  • Optimal Design for Strength Improvement of Support Bracket for Sanding Device of Railway Vehicle Using Topology Optimization
    Yonho Cho, Woohyuck Yoon
    Journal of the Korean Society for Precision Engineering.2020; 37(4): 263.     CrossRef
  • 8 View
  • 0 Download
  • Crossref
Evaluation of Fatigue and Fracture Characteristics of High-Speed Rail Material
Jung Won Seo, Seok Jin Kwon, Hyun Kyu Jun, Dong Hyeong Lee
J. Korean Soc. Precis. Eng. 2017;34(12):861-866.
Published online December 1, 2017
DOI: https://doi.org/10.7736/KSPE.2017.34.12.861
Rolling contact fatigue (RCF) and wear caused by rolling contact between the wheel and rail are inevitable problems in railway systems. An increase in axle load or the slip ratio causes excessive wear. However, RCF and wear do not act independently, but one influences the other. Wheel and rail materials and manufacturing quality have a considerable influence on the formation of RCF and the ensuing wear. Therefore, the mechanical properties of the wheel and rail are important factors for reducing RCF and wear on the contact surface. This paper presents a comparative evaluation of the wheel and rail used in the Korean industry for high speed trains and conventional rails with respect to their fatigue and fracture behavior. A series of tests such as uniaxial tensile tests, fracture toughness tests, and fatigue crack growth tests were carried out at both room temperature and low temperatures.

Citations

Citations to this article as recorded by  Crossref logo
  • Estimating the Initial Crack Size Distribution of Thermite Welds Joint in Continuous Welded Rail
    Jae Yeon Lee, Yeun Chul Park, Ji Hyeon Kim, Jun Hyeok Kwon
    Journal of Korean Society of Steel Construction.2024; 36(6): 451.     CrossRef
  • 9 View
  • 0 Download
  • Crossref