In this paper, we introduce a recently built screwing robotic system for the bolt assembly of elastic steel plates. The screwing robotic system consists of two vision cameras (having narrow and wide fields of view), a collaborative robot with a 10 kg payload, and a motorized screw drill with a pneumatic bolt supplier. Due to the elasticity of the steel plates, they tend to statically deform and dynamically vibrate during tasks under the conventional setting of automatic screwing, often resulting in screw failures. Thus, we designed a compliant connector device to be attached between the robot end-effector and screw drill that can absorb vibration and shock during the bolt assembly to improve the screwing quality and success rate of the bolt assembly. Upon adopting this screwing robotic system with the compliant connector, the success rate of the bolt assembly was improved from 56% to 100%.