The role of dynamic behavior of operating rotor system in rotor design may or may not be evaluated under the impact of an external force such as earthquake. This article reports the result of an experimental study to resolve the dilemma. First, a sine weep test was performed to determine the first natural frequency of a Jeffcott rotor and compared with the ANSYS mode analysis demonstrating the reliability of experimental tests. The operating rotor vibrations were measured under the impact of sinusoidal forces at several frequencies, generated by the MTS vibration exciter. The experimental data suggest the need for a rotor design considering the dynamic behavior of the operating rotor under exciting external forces.
We have designed the structural shapes of a spiral blade and the frame to be used in an Archimedes wind-power system with the objective of increasing its mechanical strength. A conical roll-bending forming process was introduced to fabricate a metallic spiral blade, based on an incremental stepwise approach. From this process, the complicated spiral blade was constructed, and it could be applied to the wind-power mill. We proposed a few structural design concepts for improvement of the mechanical strength of the blade and frame. Fixing rods between the blades increased the natural frequency of the blades three-fold, compared to the original model with no rods. Also, the strength of the frame was increased by introducing edge-flanges with a height greater than 20 mm. This study will be helpful to industrial engineers interested in the structural design of a wind-power system in understanding the structural design process.