Rotary tables are often used to fix and support work-pieces in machine tools. Because the deformation of the rotary table is known to significantly affect the precision in the work of the machine tool, it is very important to accurately predict the static displacements of the rotary table subjected to internal and external loads. This paper deals with modeling and experimental verification of the static displacements of a large-size rotary table supported by a thrust cylindrical roller bearing (T-CRB) and a double row cylindrical roller bearing (D-CRB). To this end, a rotary table model was developed along with the quasi-static models for T-CRB and D-CRB. The equilibrium equation of the rotary table was derived, and solved one by one in the looping manner, to overcome its statically indeterminate characteristics. The proposed modeling method was verified by means of comparing to the experimental results. Finally, an extensive simulation was carried out to investigate the deflection of the rotary table subjected to cutting forces.
Citations
Citations to this article as recorded by
Absolute Inductive Angular Displacement Sensor for Position Detection of YRT Turntable Bearing Yangyang Wang, Yi Qin, Xihou Chen, Qifu Tang, Tianheng Zhang, Liang Wu IEEE Transactions on Industrial Electronics.2022; 69(10): 10644. CrossRef
Study on the Guide Rail Deformation in Linear Roller Bearings Subjected to External Loading Jun-Ho Heo, Sun-Woong Kwon, Seong-Wook Hong Journal of the Korean Society for Precision Engineering.2019; 36(1): 79. CrossRef