Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

2
results for

"복합 재료"

Article category

Keywords

Publication year

Authors

"복합 재료"

Articles
A Study on the Smart Design and Cooling Performance of Electric Vehicle Motor Using Metal-Hybrid Materials
Sung-Hwan Bang, Dong-Ryul Lee
J. Korean Soc. Precis. Eng. 2021;38(8):595-603.
Published online August 1, 2021
DOI: https://doi.org/10.7736/JKSPE.021.039
The aim of this study is to numerically investigate the cooling performance of the electric vehicle motor depending on the attachment of the heat sink and materials to the cooling channel. The research focused on the numerical comparison of forced convective heat transfer coefficients with case 1 (Heat Sink-None, Cooling Channel-Al), case 2 (Heat Sink-None, Cooling Channel-Metal Hybrid Material), case 3 (Heat Sink-4EA, Cooling Channel-Al), and case 4 (Heat Sink-6EA, Cooling Channel-Al). To compare the cooling performance for novel design of the smart cooling system, selected local positions for various temperature distributions were marked on the coil surface. Normalized local Nusselt number of the cooling area at the normalized width position indicated that cooling performance of case 1 was on an average 8.05, 0.57, and 5.85% lower than that of cases 2, 3, and 4, respectively.

Citations

Citations to this article as recorded by  Crossref logo
  • Vehicle-motion-based Front Wheel Steer Angle Estimation for Steer-by-Wire System Fault Tolerance
    Seungyong Choi, Wanki Cho, Seung-Han You
    Journal of the Korean Society for Precision Engineering.2024; 41(5): 347.     CrossRef
  • 9 View
  • 0 Download
  • Crossref
Development of DLP 3D Printer with Multiple Composite Materials
SoRee Hwang, JongWon Lee, SoHyang Lee, DaeGi Hong, MinSoo Park
J. Korean Soc. Precis. Eng. 2020;37(5):381-388.
Published online May 1, 2020
DOI: https://doi.org/10.7736/JKSPE.019.128
Since most commercialized DLP 3D printers fabricate 3D structures by sinking materials to Vat using a bottom-up method, it is difficult to use various materials simultaneously and there are many restrictions on printing composite materials. Especially, composite resin mixed with various functional powders in photo curable resin generally has high viscosity, causing difficult material flow in the bottom-up method when using Vat. Additionally, most of the previously presented methods for fabricating multi-material structure use individual curing for each material, so the adhesion force at the contact surface is less than 50% compared to single material. Thus, in this paper, we propose a new type of DLP 3D printer that combines Material Extrusion and the DLP system. The proposed equipment can supply high viscosity composite material resins to a specific area to cure various materials simultaneously. This method will enable fabrication of multiple composite material structures with sufficient adhesion force. The tensile test will be performed to verify suitability of the proposed method.

Citations

Citations to this article as recorded by  Crossref logo
  • Evaluation of Bond Strength in Multi-Material Specimens Using a Consumer-Grade LCD 3D Printer
    Shunpei Shimizu, Masaya Inada, Tomoya Aoba, Haruka Tamagawa, Yuichiro Aoki, Masashi Sekine, Sumihisa Orita
    Journal of Manufacturing and Materials Processing.2025; 9(10): 332.     CrossRef
  • Development of a Material Mixing Extrusion Type Chocolate 3D Printer
    MinSoo Park, HyungJik Jeong, JaeHyuek Moon, JungMuk Lim
    Journal of the Korean Society for Precision Engineering.2021; 38(2): 145.     CrossRef
  • Dimensional Characteristics of 3D Printing by FDM and DLP Output Methods
    Myung-Hwi Jung, Jeong-Ri Kong, Hae-Ji Kim
    Journal of the Korean Society of Manufacturing Process Engineers.2021; 20(1): 66.     CrossRef
  • Property Analysis of Photo-Polymerization-Type 3D-Printed Structures Based on Multi-Composite Materials
    So-Ree Hwang, Min-Soo Park
    Applied Sciences.2021; 11(18): 8545.     CrossRef
  • 7 View
  • 0 Download
  • Crossref