Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

7
results for

"분산"

Article category

Keywords

Publication year

Authors

"분산"

Articles
Development of Distributed Hybrid Type Heating System Having Heat-Pump Technic for Agriculture
Ju Min Lee, Goo Jo Kim, Eun Gi Ahn
J. Korean Soc. Precis. Eng. 2022;39(12):905-911.
Published online December 1, 2022
DOI: https://doi.org/10.7736/JKSPE.022.075
  • 5 View
  • 0 Download
Indoor Localization of a Mobile Robot based on Unscented Kalman Filter Using Sonar Sensors
Soo Hee Seo, Jong Hwan Lim
J. Korean Soc. Precis. Eng. 2021;38(4):245-252.
Published online April 1, 2021
DOI: https://doi.org/10.7736/JKSPE.021.006
This paper proposes a UKF-Based indoor localization method that evaluates the optimal position of a robot by fusing the position information from encoders and the distance information of the obstacle measured by ultrasonic sensors. UKF is a method of evaluating the robot’s position by transforming optimal sigma points extracted using the unscented transform and is advantageous for the localization of a nonlinear system. To solve the problem of the specular reflection effect of ultrasonic sensors, we propose a validation gate that evaluates the reliability of the ranges measured by sonar sensors, that can maximize the quality of the position evaluation. The experimental results showed that the method is stable and convergence of the position error regardless of the size of the initial position error and the length of the sampling time.
  • 7 View
  • 0 Download
Unscented Kalman Filter Based 3D Localization of Outdoor Mobile Robots
Woo Seok Lee, Min Ho Choi, Jong Hwan Lim
J. Korean Soc. Precis. Eng. 2020;37(5):331-338.
Published online May 1, 2020
DOI: https://doi.org/10.7736/JKSPE.019.066
This paper proposes a practical method, for evaluating 3-D positioning of outdoor mobile robots using the Unscented Kalman Filter (UKF). The UKF method does not require the linearization process unlike conventional EKF localization, so it can minimize effects of errors caused by linearization of non-linear models for position estimation. Also, this method does not require Jacobian calculations difficult to calculate in the actual implementation. The 3-D position of the robot is predicted using an encoder and tilt sensor, and the optimal position is estimated by fusing these predicted positions with the GPS and digital compass information. Experimental results revealed the proposed method is stable for localization of the 3D position regardless of initial error size, and observation period.

Citations

Citations to this article as recorded by  Crossref logo
  • Research on Parameter Compensation Method and Control Strategy of Mobile Robot Dynamics Model Based on Digital Twin
    Renjun Li, Xiaoyu Shang, Yang Wang, Chunbai Liu, Linsen Song, Yiwen Zhang, Lidong Gu, Xinming Zhang
    Sensors.2024; 24(24): 8101.     CrossRef
  • A Study on Improving the Sensitivity of High-Precision Real-Time Location Receive based on UWB Radar Communication for Precise Landing of a Drone Station
    Sung-Ho Hong, Jae-Youl Lee, Dong Ho Shin, Jehun Hahm, Kap-Ho Seo, Jin-Ho Suh
    Journal of the Korean Society for Precision Engineering.2022; 39(5): 323.     CrossRef
  • 6 View
  • 0 Download
  • Crossref
Analysis and Modeling of Process Variables in Surface Hardening Process of Ti-6Al-4V using Laser
Eunseong Kim, Hong Seok Kim
J. Korean Soc. Precis. Eng. 2019;36(8):771-776.
Published online August 1, 2019
DOI: https://doi.org/10.7736/KSPE.2019.36.8.771
The objective of this study was to perform surface hardening experiments of titanium alloy using laser. The surface hardness value after laser hardening treatment was observed to increase with respect to the inflow of laser energy. However, when the laser energy exceeded the critical value, damage and cracks were observed on the surface of the material. The relationship between surface hardness values and process variables such as laser energy, scan speed, and number of laser scans was quantitatively modeled through the design of experiments and analysis of variance. Using the established mathematical model, the surface hardness value of the material can be predicted accurately with an average of 10% error over various process conditions. Analysis of the surface composition of the material using energy dispersive spectrometry showed that titanium oxide was the main cause of the increasing surface hardness. Further studies will be conducted to improve the accuracy and predictability of the model using nonlinear modeling techniques.
  • 5 View
  • 0 Download
Unscented Kalman Filter based Outdoor Localization of a Mobile Robot
Woo Seok Lee, Jong Hwan Lim
J. Korean Soc. Precis. Eng. 2019;36(2):183-190.
Published online February 1, 2019
DOI: https://doi.org/10.7736/KSPE.2019.36.2.183
This paper proposes a practical method, for evaluating positioning of outdoor mobile robots using Unscented Kalman Filter (UKF). Since the UKF method does not require the linearization process unlike EKF localization, it can minimize effects of errors caused by linearization of non-linear models for position estimation. This method enables relatively high performance position estimation, using only non-inertial sensors such as low-precision GPS and a digital compass. Effectiveness of the UKF localization method was verified through actual experiments and performance of position estimation was compared with that of the existing EKF method. Experimental results revealed the proposed method has better performance than the EKF method, and it is stable regardless of initial error size, and observation period.

Citations

Citations to this article as recorded by  Crossref logo
  • Localization-based waiter robot for dynamic environment using Internet of Things
    Muhammad Waqas Qaisar, Muhammad Mudassir Shakeel, Krzysztof Kędzia, José Mendes Machado, Ahmed Zubair Jan
    International Journal of Information Technology.2025; 17(6): 3675.     CrossRef
  • Research on Parameter Compensation Method and Control Strategy of Mobile Robot Dynamics Model Based on Digital Twin
    Renjun Li, Xiaoyu Shang, Yang Wang, Chunbai Liu, Linsen Song, Yiwen Zhang, Lidong Gu, Xinming Zhang
    Sensors.2024; 24(24): 8101.     CrossRef
  • Indoor Localization of a Mobile Robot based on Unscented Kalman Filter Using Sonar Sensors
    Soo Hee Seo, Jong Hwan Lim
    Journal of the Korean Society for Precision Engineering.2021; 38(4): 245.     CrossRef
  • Unscented Kalman Filter Based 3D Localization of Outdoor Mobile Robots
    Woo Seok Lee, Min Ho Choi, Jong Hwan Lim
    Journal of the Korean Society for Precision Engineering.2020; 37(5): 331.     CrossRef
  • 8 View
  • 0 Download
  • Crossref
Effect of Protection Design Parameters on Mine Blast Impact Characteristics
Chanyoung Park, Chongdu Cho
J. Korean Soc. Precis. Eng. 2018;35(5):521-529.
Published online May 1, 2018
DOI: https://doi.org/10.7736/KSPE.2018.35.5.521
While designing an armored vehicle platform, survivability is the most important capability and so protection design should be performed. In particular, mine protection design should be preferentially considered in a way that can reduce mass casualties. In this study, a simplified model, the main design parameters and their levels were defined, and then mine blast simulations were performed to obtain an effective protection design procedure. Before performing the main simulation, an experiment and simulation for a simple armor plate were performed and compared in order to certify the reliability of the numerical model. Afterwards, simulation cases, which were based on the reasonable numerical model, were defined by the DOE (Design of Experiment). An evaluation of the simulation results was carried out through both the contour and in a statistical manner, via a main effect analysis and ANOVA (Analysis of Variance). Finally, the impact characteristics of a protection parameters under the mine blast were estimated.

Citations

Citations to this article as recorded by  Crossref logo
  • The Study on the Mine Protective Structural Design of Wheeled Armored Vehicle Body
    Chan Young Park, Kyoung Hoon Lee
    Journal of the Korean Society for Precision Engineering.2019; 36(3): 255.     CrossRef
  • 7 View
  • 0 Download
  • Crossref
Optimal Dispersion Condition to Distinguish OPD Directions of Spectrally-Resolved Interferometry
Young Ho Yun, Dae Hee Kim, Ki-Nam Joo
J. Korean Soc. Precis. Eng. 2017;34(4):259-264.
Published online April 1, 2017
DOI: https://doi.org/10.7736/KSPE.2017.34.4.259
Spectrally resolved interferometry (SRI) is an attractive technique to measure absolute distances without any moving components. In the spectral interferogram obtained by a spectrometer, the optical path difference (OPD) can simply be extracted from the linear slope of the spectral phase. However, SRI has a fundamental measuring range limitation due to maximum and minimum measurable distances. In addition, SRI cannot distinguish the OPD direction because the spectral interferogram is in the form of a natural sinusoidal function. In this investigation, we describe a direction determining SRI and propose the optimal conditions for determining OPD direction. Spectral phase nonlinearity, caused by a dispersive material, effects OPD direction but deteriorates spectral interferogram visibility. In the experiment, various phase nonlinearities were measured by adjusting the dispersive material (BK7) thickness. We observed the interferogram visibility and the possibility of direction determination. Based on the experimental results, the optimal dispersion conditions are provided to distinguish OPD directions of SRI.

Citations

Citations to this article as recorded by  Crossref logo
  • Development of Spectral-Domain Interferometer Having Dual Reference Paths based on Polarization for Measuring Absolute Distances
    Yeoungjun Kim, Heulbi Ahn, Jungjae Park, Jonghan Jin
    Journal of the Korean Society for Precision Engineering.2020; 37(3): 181.     CrossRef
  • Absolute Distance Meter Operating on a Free-Running Mode-Locked Laser for Space Mission
    Yoon-Soo Jang, Wooram Kim, Heesuk Jang, Seung-Woo Kim
    International Journal of Precision Engineering and Manufacturing.2018; 19(7): 975.     CrossRef
  • 7 View
  • 0 Download
  • Crossref