In this study, we successfully demonstrated a fuel cell fabrication method using a platinum-samarium-doped ceria (Pt-SDC) composite cathode, which could reduce the platinum content while maintaining the same thickness as the functional layer. The Pt-SDC composite cathode was deposited by a sputtering process in which two materials were simultaneously deposited by a co-sputtering system. Despite the decreased platinum content in the composite cathode, we achieved high performance of the fuel cell since Pt-SCD was able to form triple-phase boundaries (TPBs) not only at the interface between the cathode and the electrolyte but at the entire volumetric surface of the cathode. This composite cathode revealed that Pt-SDC could enhance the oxygen reduction reaction rate by enlarging the TPB site in the cathode. The fuel cell fabricated in this study with a composite cathode demonstrated improved performance at 1.66 times the peak power density of a pristine fuel cell.