SFT, which has a high glass fiber content, is one of the effective methods to replace metal and secure weight reduction and price competitiveness. Also, paintless injection molding in which a functional pattern is applied to the mold surface can eliminate the cost of painting. In this study, three types of SFTs were manufactured by adding round glass fibers measuring Φ7 and Φ10 μm and flat glass fiber measuring 27 × 10 μm for the experiment. DOE (Design of Experiment) was conducted to confirm the change in the warpage of the product and the gloss of the micro pattern due to the cross-sectional shape of glass fibers and the major injection conditions. Based on the results, it was identified that the flat SFT had a very small warpage compared to the round SFTs, and the holding pressure was the main factor in the warpage of all three SFTs. The Φ7 μm SFT had the largest gloss value, and the Φ10 μm SFT and the flat SFT had similar average values. All SFTs demonstrated an enormous change in gloss according to the change in mold temperature. The flat SFT had the smallest standard deviation in both warpage and gloss.
SFT, which has a high glass fiber content, is one of the effective methods to replace metal and secure weight reduction and price competitiveness. This study evaluated the effect of glass fiber shape on mechanical properties in injection molding by fabricating SFT with a glass fiber content of 60%. Three types of SFTs were manufactured by adding round glass fibers of Φ7 μm and Φ10 μm and flat glass fibers of 27 × 10 μm. DOE (Design of Experiment) conducts to confirm the change in tensile strength due to changes in significant injection conditions. As a result of the experiment, Φ7 μm SFT and flat SFT have similar tensile strength and Φ10 μm SFT showed the lowest tensile strength value. As for the standard deviation of strength value, the Φ7 μm SFT had the largest standard deviation, and the Φ10 μm SFT showed the slightest change in the injection conditions. In flat SFT, it confirms that the tensile strength increased as the molding temperature increased. The fracture surface observes using SEM. It founds that the tensile strength lowers due to the small glass fiber density and many pullouts at the fracture surface of Φ10 μm with weak strength.
Citations
Citations to this article as recorded by
Enhancing Adhesive Strength between Metal and Plastic in Smartphone Applications Moon-Soo Kim, Jin-Hyung Park, kang-Suk Choi, Seon-Mi Park, Seong-Dae Choi Journal of the Korean Society of Manufacturing Process Engineers.2025; 24(9): 82. CrossRef