Until recently, solar energy has been considered as a promising regeneration energy source in the future. Solar cell wafer production involves ingot cutting, cleaning, and packaging processes. In this research, design, fabrication, and testing of a batch-type midsonic for cleaning solar cell wafers were carried out. To reduce the damage compared to conventional systems, we decided to use 400 kHz in a midsonic wave range, and we used far-field to obtain a more regular acoustic pressure. Finite element analysis with Ansys software predicted an anti-resonance frequency of 458 kHz for an ultrasonic waveguide, and the measured result of the fabricated system was 454 kHz with a 0.9% error. Acoustic pressures were measured, and the result confirmed regular and high distributions. Finally, cleaning tests were performed, and a 90% particle removal efficiency (PRE) was achieved at 900 W. Thus, the newly developed midsonic cleaning system can be considered to clean particles on solar cell wafers efficiently while preventing damage.