Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

3
results for

"수명예측"

Article category

Keywords

Publication year

Authors

"수명예측"

Articles
Study on the Life Prediction Analysis Methodology of Worm Gear for the TV Driving Mechanism
Dong Uk Kim, Tae Bae Kim, Il Joo Chang
J. Korean Soc. Precis. Eng. 2025;42(8):595-602.
Published online August 1, 2025
DOI: https://doi.org/10.7736/JKSPE.025.020
In the case of TV products, space constraints and design requirements make it advantageous to use a worm gear that has a small volume and a self-locking function. Single enveloping worm gear teeth are classified as ZA, ZN, ZK, ZI, and ZC according to international standards. However, combining worm shafts and worm wheels with different tooth profiles can significantly worsen meshing transmission errors and reduce the lifespan of the worm gear. Despite these challenges, due to processing limitations, ease of manufacturing, and cost reduction, combinations of worm shafts and worm wheels with different tooth profiles are still considered. In this study, we confirmed the meshing transmission error for a worm gear that combined a ZA tooth shape worm shaft with a ZI tooth shape worm wheel. Additionally, we examined the contact stress and fatigue life characteristics of the material combinations using finite element analysis (FEM).
  • 21 View
  • 1 Download
Prediction of Low-Cycle Fatigue Life of In738LC Using Plastic Strain Energy Density
Sung Uk Wee, Chang Sung Seok, Jae Mean Koo, Jeong Min Lee
J. Korean Soc. Precis. Eng. 2019;36(4):401-406.
Published online April 1, 2019
DOI: https://doi.org/10.7736/KSPE.2019.36.4.401
Gas turbine blades are important parts of a power plant, and thus, it is necessary to be able to predict the low-cycle fatigue life of the blades. In this study, a low-cycle fatigue test of In738LC, which is used primarily in gas turbine blade manufacture, was performed at various high temperatures (750oC, 800oC, and 850oC). From the test results, the stressstrain curve and the stress-strain hysteresis loop were obtained. It was established that In738LC has no strain hardening or softening. The life prediction equations for low-cycle fatigue were derived using the Coffin-Manson equation and the energy model. In conclusion, one equation for predicting the life low-cycle fatigue was obtained using the energy level with temperature as the varying factor.
  • 4 View
  • 0 Download
Low Cycle Fatigue Characteristics of a Ni-Based Single Crystal Superalloy CMSX-4 at Elevated Temperature
Jae Gu Choi, Chang-Sung Seok, Sung Uk Wee, Eui-Suck Chung, Byoung-Gwan Yun, Suk-Hwan Kwon
J. Korean Soc. Precis. Eng. 2019;36(3):271-279.
Published online March 1, 2019
DOI: https://doi.org/10.7736/KSPE.2019.36.3.271
Isothermal low cycle fatigue (LCF) behavior of a crystal nickel-based superalloy CMSX-4, a material for high-pressure turbine first stage rotor blade, was investigated at elevated temperatures. Strain-controlled LCF tests were performed under various test conditions, such as mechanical strain amplitude. Stress response and cyclic deformation were investigated, and equations of LCF life prediction were derived through the Coffin-Manson method. In addition, fatigue-induced fracture mechanism and microstructural evolution were investigated, using scanning electron microscopy (SEM). Results revealed that cyclic behavior of the CMSX-4 superalloy, was characterized by cyclic softening with increasing number of cycles at 800oC and 900oC. LCF of the CMSX-4 superalloy at 800oC and 900oC could be affected mainly by elastic damage in fatigue processing. Fatigue cracks were initiated in the surface oxide layer of the specimen. The plane of fracture surface was tilted toward <001> direction. The fatigue fracture mechanism was quasi-cleavage fracture at 800oC and 900oC. In all broken specimens, the γˊ phase morphology maintained cuboidal shape.

Citations

Citations to this article as recorded by  Crossref logo
  • Mechanical Loading Effect on Stress States and Failure Behavior in Thermal Barrier Coatings
    Da Qiao, Wengao Yan, Wu Zeng, Jixin Man, Beirao Xue, Xiangde Bian
    Crystals.2023; 14(1): 2.     CrossRef
  • A method for predicting the delamination life of thermal barrier coatings under thermal gradient mechanical fatigue condition considering degradation characteristics
    Damhyun Kim, Kibum Park, Keekeun Kim, Chang-Sung Seok, Jongmin Lee, Kyomin Kim
    International Journal of Fatigue.2021; 151: 106402.     CrossRef
  • Low-cycle fatigue behavior of K416B Ni-based superalloy at 650 °C
    Jun Xie, De-long Shu, Gui-chen Hou, Jin-jiang Yu, Yi-zhou Zhou, Xiao-feng Sun
    Journal of Central South University.2021; 28(9): 2628.     CrossRef
  • 6 View
  • 0 Download
  • Crossref