As emission regulation of vehicles is being reinforced globally, the current requirement of the automobile industry are innovative green technologies that reduce the weight of the vehicle, thereby improving fuel consumption and the amount of exhaust gas emission. The application of ultra-high strength steel (UHSS) for vehicles has specifically been studied for light weight of vehicles. UHSS withstands greater loads than a general steel sheet of the same thickness. The spring-back and formability of the UHSS are also worse than general steel sheet due to their high elasticity and high yield strength. Various methods applied for processing UHSS include roll-forming and hot-press forming. However, these processes have not only high installation cost but also low productivity. This study therefore developed the cold-press forming method to overcome these disadvantages. The objective of this study is to determine the optimum conditions of the cold press required to form the upper seat track using UHSS. Forming analysis predicted the spring-back at each stage of the press forming. The prediction of spring-back was compared with the manufactured upper seat track by try-out, thereby reducing trial and error in the pressing process.
Citations
Citations to this article as recorded by
Press Forming/Drawing Molding in the Radiator Support Mold Process of 440 MPa High Strength Steel Sheets Dong-Hwan Park, Tae-Gil Lee, Hyuk-Hong Kwon Journal of the Korean Society for Precision Engineering.2024; 41(1): 71. CrossRef
Hot Stamping Parts Shear Mold Manufacturing via Metal Additive Manufacturing Myoung-Pyo Hong Applied Sciences.2022; 12(3): 1158. CrossRef
Impact Energy Absorption Capability Analysis of Locally Softened High-Strength Steel Bumper Beams Using Induction Heat Treatment Jongsu Kang, Myunghwan Song, Hyeongjun Jeon, Jae-Yong Lim Transaction of the Korean Society of Automotive Engineers.2019; 27(1): 39. CrossRef
Process Design of Automobile Seat Rail Lower Parts using Ultra-High Strength, DP980 Steel Dong-Hwan Park, Yun-Hak Tak, Hyuk-Hong Kwon Journal of the Korean Society of Manufacturing Process Engineers.2018; 17(2): 160. CrossRef