In this study, based on directed energy deposition (DED) technology, one of the additive manufacturing technologies, a porous material fabricated by mixing various aluminum alloys and foaming agent was manufactured. First, the foaming agent formed pores inside the deposited materials and differences in foaming characteristics were observed depending on the type of aluminum. Also, the foaming characteristics according to the laser power, which is a representative process variable, were analyzed. As a result, a closed-cell porous material with a maximum porosity at a laser power of 1,100 W was manufactured. Results of the compression test showed that the porous material made by the pores generated therein collapses to absorb energy, and the internal pores disappear to become high density. Therefore, Young’s modulus and yield stress were reduced by the pores inside the sample of pure aluminum and Al6063. However, it was found that the specific energy absorption, which is an advantage of the foamed materials, increased compared to non-porous materials. The findings of this study confirmed that it was possible to manufacture DED-applied foam materials using aluminum powder and a foaming agent.
In this study, thin-shell surface observation, storage capability test, and micro-compressive test were performed for self-healing microcapsules using a field emission scanning electron microscope (FE-SEM) and a micro-compressive testing machine. A microcapsule having a melamine-urea-formaldehyde thin-shell and a microcapsule having a melamine-urea-formaldehyde thin-shell reinforced with carbon nanotubes were used. Two carbon nanotube contents were considered: 0.17 wt% and 0.50 wt%. Thin-wall shell state was relatively smooth when microcapsules were not reinforced with carbon nanotubes. It was uneven when microcapsules were reinforced with carbon nanotubes. Prepared microcapsules showed little decreases of weights even when the exposure time was increased regardless of whether they were reinforced with carbon nanotubes. Thus, their storage capability was good. When carbon nanotube content was the same, the fracture load was almost constant without being affected by the diameter of the microcapsule. However, fracture displacement increased with increasing diameter of the microcapsule. When diameters of microcapsules were similar, fracture load and fracture displacement increased when carbon nanotube content increased. It was found that self-healing microcapsules had good storage capability and mechanical properties. Thus, they could be applied to repair damage to composite materials if thin-shell formation mechanism for adding carbon nanotubes is supplemented.
Citations
Citations to this article as recorded by
Analysis of mechanical properties and stress distribution in self-healing microcapsules using micro-compressive test, nanoindentation test, and finite element analysis Hyeon Ji Kim, Sung Ho Yoon Functional Composites and Structures.2024; 6(4): 045001. CrossRef
A simplified predictive model for the compression behavior of self-healing microcapsules using an empirical coefficient Jaeho Cha, Sungho Yoon Functional Composites and Structures.2024; 6(3): 035010. CrossRef
We studied compressive behavior of two types of lattice structures having small-scale struts fabricated by utilizing a metal additive manufacturing process. Generally known, the lattice structure has some advantages such as lightweight and high specific mechanical strength, allowing diverse potential applications in the aerospace and mobility industries. In this work, we proposed two types of lattice such as body-centered truss (BCT) and octahedral truss (OCT) that were designed and fabricated for a compression test. From the experimental results, the OCT has much higher strength than the BCT, and all cases showed several buckling modes during the compressive behavior. Furthermore, ‘restructuring’ occurred with BCT, and the compressive force increased overall but fluctuated due to the restructuring by an increase of compression. Through this work, we found out that the BCT has the interesting compressive behaviors, and a repetitive bucking-restructuring was found. In fact, its strength could be increased continuously by the restructuring during compression. In conclusion, the BCT has key-characteristics of lightweight and re-strengthening, which are applicable to various applications in the industry.
Citations
Citations to this article as recorded by
Numerical Study on the Quantitative Structure-Property Relation of Lattice Truss Metals Jiyeon Kim, Dongmyoung Jung, Yongwoo Kwon MATERIALS TRANSACTIONS.2022; 63(10): 1317. CrossRef
Analysis on Material Behavior of Metal Additive Manufactured Lattice Structures under Quarter Compression Test Qingye Jin, Simo Yeon, Yong Son, Sanghu Park Journal of the Korean Society for Precision Engineering.2021; 38(9): 667. CrossRef
Recently, interbody fusion cage devices have been developed and used for lumbar reconstruction. Stand-alone cages reduce segmental mobility. In this study, we evaluated mechanical properties and biocompatibility of lumbar stand-alone cages. Evaluation of mechanical properties followed the ASTM F2077 standard that covers methods for static and fatigue testing. The sterility test was ensured by the ISO 11737-2. The extractable substances test was ensured by the Korea pharmacopoeia. Cytotoxicity of the specimen was assessed using MTT assay as recommended by the international standard guidelines, ISO 10993-Part 5 for in vitro testing.