In this paper, we analyze the cooling performance according to the HVAC types installed in the energy storage system (ESS). Batteries in ESS have the disadvantages of decomposition and catching fire at high temperatures, so it is important to control the temperature. For the purpose of cooling the batteries in ESS, we designed the cooling systems with stand and ceiling type HVAC. Both the cooling systems for ESS are analyzed numerically for the comparison of cooling performance. The heat dissipation of the battery is 1979.3 W/m3 on 1 C-Rate discharge, and the cooling flow rate and temperature are 6.375 kg/s and 17℃, respectively. The maximum temperature of batteries with stand and ceiling type cooling systems are calculated to be 65.85 and 60.5℃, respectively. In conclusion, cooling systems with ceiling type HVAC are more efficient than cooling systems with stand type HVAC.
This study is to investigate the cooling performance of the battery in the electric vehicle depending on the attachment of the cooling plates and materials to the battery cells. Research focused on the numerical comparison of forced convective heat transfer coefficients with case 1(cell-Al, cooling plate-None), case 2(cell-Al, cooling plate-Al), case 3(cell-Al, cooling plate-C), and case 4(cell-C, cooling plate-Al). Normalized local Nusselt number of the cooling area at the normalized width position indicated that the heat transfer coefficient of the case 1 was averaging at 7, 14.5, 11.9% lower than that of case 2, case 3, and case 4. Based on case 3, the cooling performance with six different types of mass flow rates (0.05, 0.075, 0.0875, 0.1, 0.125, 0.15 kg/s) were compared. Normalized local Nusselt number at the normalized width position indicated that the heat transfer coefficient of 0.0875 kg/s was averaging at 35.8, 11.9% higher than that of 0.05, 0.075 kg/s and 12.3, 36.4, 60% lower than that of 0.1, 0.125, 0.15 kg/s. Ultimately, the best optimization design for air-cooling performance was case 3 with mass flow rate of 0.125 kg/s.
Citations
Citations to this article as recorded by
Numerical and Experimental Approaches for Mechanical Durability Assessment of an EV Battery Pack Case Hyun Soo Kim, Mingoo Cho, Changyeon Lee, Jaewoong Kim, Sungwook Kang Materials.2025; 18(24): 5683. CrossRef
This research is to investigate the augmentation of cooling performance of water-cooling in the electric vehicle secondary battery. The research focused on the numerical study of heat transfer coefficients for cooling performance augmentation. To improve the water-cooling performance with three different inlet sections of water-cooling and five different mass flow rates, air-cooling, and water-cooling were compared. To compare the water-cooling performance, selected local positions for various temperature distributions were marked on the battery cell surface. The normalized local Nusselt number of the cooling area at the normalized height position indicated that the heat transfer coefficient of the combined section was averaging at 77.95 and 58.33% higher than that of the circle and square, respectively. The heat transfer coefficient with the normalized width by water-cooling at combined section was averaging at 5.15 times higher than that of the air-cooling. At the normalized height, the cooling performance at the water flow rates of 10 Lpm was averaging at 68-74% higher than that of 5 Lpm and 35-39% lower than that of 25 Lpm. Ultimately, the best cooling performance existed with the combined section, and the water flow rate of 10 Lpm was most appropriate, given the temperature difference and power consumption.
Citations
Citations to this article as recorded by
Influence of heat-transfer surface morphology on boiling-heat-transfer performance RenDa He, ZhiMing Wang, Fei Dong Heat and Mass Transfer.2022; 58(8): 1303. CrossRef
This study is to investigate the cooling performance of the secondary battery in electric vehicles according to three different gaps between battery cells. To accomplish the convective cooling performance of the battery surface with three different gaps, selected local positions (X, Y, Z) for various temperature distributions were marked on the gap surface contacting the cell surface. The cooling performance of the gap of 0.5 mm was compared with the gaps of 5 mm, and 1 mm. Normalized local Nusselt number of the cooling area at the normalized width position indicated that the gap of 0.5 mm was on average 26.99% lower than that of 5 mm and 0.49% lower than that of 1 mm. At the normalized height, the gap of 0.5 mm was on average 12.12% higher than that of 1 mm. Because of the vortex at the outlet area, cooling performance at the gap of 0.5 mm was on average 13.19% higher than that of 5 mm and 0.79% higher than that of 1 mm at normalized thickness. Ultimately, the best cooling performance existed at the gap of 5 mm, but the gap of 0.5 mm was best for improving space efficiency, energy storage capacity, and vehicle-driving durability.
Citations
Citations to this article as recorded by
A Study on Cooling Performance Augmentation of Water-Cooling and Optimization Design Utilizing Carbon Material in Electric Vehicle Secondary Battery Seung Bong Hyun, Dong-Ryul Lee Journal of the Korean Society for Precision Engineering.2020; 37(7): 519. CrossRef
Optimization Design for Augmentation of Cooling Performance Utilizing Leading-Edge Materials in Electric Vehicle Battery Cells Byeong Yeop Kim, Dong-Ryul Lee Journal of the Korean Society for Precision Engineering.2020; 37(7): 529. CrossRef