Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

2
results for

"용융풀"

Article category

Keywords

Publication year

Authors

"용융풀"

Articles
DED Additive Manufacturing Using Auto-Surface Tracking Technology
Taeho Ha, Segon Heo, Changwoo Lee, Min-Kyo Jung, Jang-Wook Choi
J. Korean Soc. Precis. Eng. 2023;40(3):217-222.
Published online March 1, 2023
DOI: https://doi.org/10.7736/JKSPE.023.004
Directed energy deposition (DED) additive manufacturing technology enhances the functionality of existing or damaged parts by adding metallic materials to the surfaces. Blown-powder DED technology utilizes a focused, high-energy source to fuse the part’s surface with the supplied metal powder. Maintaining a constant stand-off distance (SOD), the distance between the deposition head and the workpiece, is a key factor in ensuring deposition quality, as variations in SOD will change the powder focus position and the laser spot size on the surface. Therefore, traditional additive manufacturing systems require CAD or pre-scanned surface data. In this study, we proposed auto-surface tracking technology. No workpiece CAD data or pre-scanned surface data are required, and in-situ measurement and feedback control can automatically consider the deposition height differences that cause a change in SOD when depositing the next layer. The accuracy of the SOD measurements and feedback control error was verified using a step height sample. The mean SOD measurement error was 4.7 ㎛ with a standard deviation of 42 ㎛ (reference SOD, 14 ㎜). The feasibility of the autosurface tracking technology was confirmed through the additive manufacturing processes of the gear and an actual blanking mold applied in the defense and industrial fields.
  • 20 View
  • 0 Download
Melt Pool Characterization of Selective Laser Melting of AlSi10Mg based on Numerical Model of Single-Track Scanning Process
Kang-Hyun Lee, Gyung Bae Bang, Hyung Giun Kim, Kyung Hwan Jung, Gun Jin Yun
J. Korean Soc. Precis. Eng. 2021;38(4):295-304.
Published online April 1, 2021
DOI: https://doi.org/10.7736/JKSPE.021.008
In the selective laser melting (SLM) process, a three-dimensional part is manufactured based on the formation of numerous molten tracks. Consequently, the generated melt pool in the scanning process of each track exhibits close relation to the internal defect formation and the quality of the fabricated part. In this study, a numerical model of single-track scanning of the SLM process is presented to analyze the melt pool characteristics for various process conditions. The presented model considers the thermal behavior of the powder material including the phase change and densification during the SLM process. The temperature-dependent energy absorption and the increase in effective energy absorptivity due to the keyhole mode melting are also incorporated in the heat flux model to evaluate the process conditions in the presence of high energy density. Moreover, the single-track specimens were manufactured under various process conditions for validation of the proposed model. The predicted melt pool dimensions, as well as the melting modes (Conduction/Keyhole), demonstrated good agreement with the experimental measurements. Based on the analysis results, the process boundaries (Keyhole/Lack-of-Fusion) for the SLM process of AlSi10Mg are provided and the potential application of the proposed model for exploring the process window is discussed.

Citations

Citations to this article as recorded by  Crossref logo
  • Extreme gradient boosting-based multiscale heat source modeling for analysis of solid-state phase transformation in additive manufacturing of Ti-6Al-4V
    Yeon Su Lee, Kang-Hyun Lee, Min Gyu Chung, Gun Jin Yun
    Journal of Manufacturing Processes.2024; 113: 319.     CrossRef
  • 39 View
  • 0 Download
  • Crossref