This study developed a defect-detecting system for automotive wheel nuts. We proposed an image processing method using OpenCV for efficient defect-detection of automotive wheel nuts. Image processing method focused on noise removal, ratio adjustment, binarization, polar coordinate system formation, and orthogonal coordinate system conversion. Through data collection, preprocessing, object detection model training, and testing, we established a system capable of accurately classifying defects and tracking their positions. There are four defect types. Types 1 and 2 defects are defects of products where the product is completely broken circumferentially. Types 3 and 4 defects are defects are small circumferential dents and scratches in the product. We utilized Faster R-CNN and YOLOv8 models to detect defect types. By employing effective preprocessing and post-processing steps, we enhanced the accuracy. In the case of Fast RCNN, AP values were 0.92, 0.93, 0.76, and 0.49 for types 1, 2, 3, and 4 defects, respectively. The mAP was 0.77. In the case of YOLOv8, AP values were 0.78, 0.96, 0.8, and 0.51 for types for types 1, 2, 3, and 4 defects, respectively. The mAP was 0.76. These results could contribute to defect detection and quality improvement in the automotive manufacturing sector.
Citations
Citations to this article as recorded by
Large-area Inspection Method for Machined Micro Hole Dimension Measurement Using Deep Learning in Silicon Cathodes Jonghyeok Chae, Dongkyu Lee, Seunghun Oh, Yoojeong Noh Journal of the Korean Society for Precision Engineering.2025; 42(2): 139. CrossRef