Printed electronics is a technology which is used for manufacturing flexible electronic devices dubbed as next-generation electronics such as wearable applications. To commercialize them, it is important to guarantee their electrical performance under various environmental conditions such as temperature and humidity. Moreover, flexible electronic devices usually undergo mechanical deformations such as bending and twisting, hence, it is necessary to observe the electrical performance of flexible devices under mechanical deformation considering both temperature and humidity. The effects of temperature and humidity on flexible printed electrodes, as an example of the simplest flexible electronics, under static deformation of bending and twisting are studied. Electrodes that do not deform are also strongly affected by temperature and humidity, and the increase in resistances of the electrodes with deformation is highest when twisting. The magnitude of static deformation does not affect the conductivity. The effect of line width is important for the twisting deformation. To commercialize printed electronics devices, the effects of temperature and humidity should be considered, with further consideration of the effects of mechanical deformation on the design of the devices.
Citations
Citations to this article as recorded by
Enhancements of Humidity and Gap-Sensing Properties of Coil-Shaped SnO2 Based on Layered Sputtering Method Yang Yang, Luheng Wang IEEE Transactions on Instrumentation and Measurement.2024; 73: 1. CrossRef