Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

3
results for

"인장시험"

Article category

Keywords

Publication year

Authors

"인장시험"

Articles
Study on Repair of SKD 61 Using Directed Energy Deposition with H13 and P21 Powders
Bit-na Yun, Min-seong Ko, Hyo-jeong Kang, Do-Sik Shim
J. Korean Soc. Precis. Eng. 2024;41(11):849-856.
Published online November 1, 2024
DOI: https://doi.org/10.7736/JKSPE.024.073
In this study, we investigated characteristics and mechanical properties of SKD61 repaired using the direct energy deposition (DED) process. Mechanical properties of the repaired product can vary depending on the base material and powder used in the DED process. To prepare for DED repairing for a damaged part, we conducted experiments using two different powders (H13 and P21). Experimental results showed that both powders were deposited without defects in the surface or interface between the deposited zone and the substrate. Hardness measurements indicated that the repaired region of the Repaired-H13 sample exhibited higher hardness than the base material, while the Repaired-P21 sample showed a sharp increase in hardness in the heat-affected zone (HAZ). Additionally, tensile test results revealed that the Repaired-H13 sample had lower tensile strength and elongation than the base material, whereas the Repaired-P21 sample demonstrated higher tensile strength and yield strength with a higher elongation than the Repaired-H13 sample. In case of Repaired-H13, it was confirmed that interfacial crack occurred due to a high hardness difference between the repaired part and the substrate.

Citations

Citations to this article as recorded by  Crossref logo
  • Microstructure and mechanical properties of P21 tool steel fabricated via laser powder bed fusion
    A. Rajesh Kannan, V. Rajkumar, S. Maheshwaran, N. Siva Shanmugam, Wonjoo Lee, Jonghun Yoon
    Materials Letters.2025; 398: 138930.     CrossRef
  • 32 View
  • 0 Download
  • Crossref
Practical Blended Flow Models for Bulk Metal Forming Using the Cylindrical Tensile Test with Its Related Flow Behavior at Large Strain
Chang Woon Jee, Su Min Ji, Jong Bok Byun, Man Soo Joun
J. Korean Soc. Precis. Eng. 2022;39(8):583-593.
Published online August 1, 2022
DOI: https://doi.org/10.7736/JKSPE.022.037
The fundamental flow models of metallic materials at room temperature, including the Ludwik, Hollomon, Swift and Voce models, were evaluated in terms of tensile test with an emphasis on the necking phenomena and post-necking behavior, to emphasize their limitation in satisfying tensile strength and Considère condition as well as the pre-necking and post-necking strain hardening. To resolve this limitation and enhance the applicability of the new proposed flow model to typical strain hardening materials, the Ludwik-Swift blended flow model is proposed after investigation into three blended flow models among the Ludwik, Voce and Swift models. Results revealed that there is no interpolation-based blended flow model of the fundamental flow models for the example flow curve exhibiting typical strain hardening but that the extrapolation-based combination of them can provide an engineering solution when the Ludwik and Swift models are blended. It was revealed that the reason for their good matching lies in the distinct difference in the strain hardening exponent, between the Ludwik and Swift models in the case of metallic materials with typical strain hardening.

Citations

Citations to this article as recorded by  Crossref logo
  • Novel finite element model of analyzing wall thickness during tube drawing considering raw tube’s thickness non-uniformity and die misalignment
    N. A. Razali, J. B. Byun, M. S. Joun
    International Journal of Material Forming.2024;[Epub]     CrossRef
  • 35 View
  • 1 Download
  • Crossref
Experimental Investigation on Fatigue Characteristics of SPR (Self-Piercing Rivet) and Hybrid Joints
Dae Yeong Kim, Dong Ok Kim, Seong S. Cheon
J. Korean Soc. Precis. Eng. 2018;35(3):335-340.
Published online March 1, 2018
DOI: https://doi.org/10.7736/KSPE.2018.35.3.335
In this paper, fatigue life of extruded aluminium single lap joints, both by self-piercing rivet (SPR) and by hybrid joining (Adhesive-SPR), were characterised based on the quasi-static and fatigue tests. The rivet tail pull-out fracture occurred in the SPR joint specimen under the quasi-static tensile test because the peel stress caused the rivet to separate from the joint. Therefore, adhesive joining was considered to effectively prevent the rivet in the joint specimen from separation. As a result, 68% higher tensile strength of the hybrid joint specimen was observed, compared to that of the SPR joint specimen. From the fatigue tests, the fatigue limit load of SPR joint specimen was found to be 4.8 kN i.e.35% of tensile strength load. The fatigue limit load of the hybrid joint specimen was revealed to be 5.6 kN, i.e., 20% of tensile strength load. Over the fatigue limit load conditions, fracture in base material was shown in the case of SPR joint specimen. Also, fractures in base material and transient failure in adhesives were observed in hybrid joint specimen.

Citations

Citations to this article as recorded by  Crossref logo
  • A Study on the Improvement of Bonding Strength of Heterojunctions by Applying Laser Surface Treatment to Carbon Fiber Reinforced Plastics
    Huan Wang, Seong Cheol Woo, Chung-Ki Sim, Seong-Kyun Cheong, Joohan Kim
    Journal of the Korean Society for Precision Engineering.2022; 39(9): 683.     CrossRef
  • Optimal Stiffness Design of Self-Piercing Riveting's C-Frame for Multimaterial Joining
    Chang-Yeul Shin, Jae-Jin Lee, Ji-Hun Mun, Soon-Deok Kwon, Min-Seok Yang, Jae-Wook Lee
    Journal of the Korean Society of Manufacturing Process Engineers.2021; 20(5): 76.     CrossRef
  • Investigating the Tensile-Shear of Dissimilar Materials Joined Using the Hybrid SPR Technique
    Kwan-jong Yu, Du-bok Choi, Jae-yeol Kim
    Journal of the Korean Society of Manufacturing Process Engineers.2020; 19(9): 33.     CrossRef
  • Study on the 3-layer Joining of Aluminum Alloy and Steel Plate Using Self-piercing Riveting
    You-Sung Kang, Ji-Hyoung Park, Yongho Jeon, Minsung Hong
    Journal of the Korean Society of Manufacturing Technology Engineers.2018; 27(4): 307.     CrossRef
  • 34 View
  • 0 Download
  • Crossref