A simple and rapid method of fabricating Mg(OH)2 layer by chemical immersion was developed to improve the corrosion resistance of the magnesium alloy AZ31. The fabricated surface was superhydrophobic with a self-assembled monolayer coating of silane. The surface characteristics were evaluated by Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS) and X-ray Photoelectron Spectroscopy (XPS). The average water contact angle and sliding angle were determined to be 160° and 7° respectively as a result of wettability test. Potentiodynamic polarization indicated that both Mg(OH)2 layer and the thin layer of air were effective in improving anti-corrosion. This method which is efficient with regard to time and cost would be useful for magnesium industries and its application
Citations
Citations to this article as recorded by
The mechanisms and advances in magnesium-based materials protection against corrosion by the superhydrophobic coatings Ludmila B. Boinovich, Kirill A. Emelyanenko, Alexandre M. Emelyanenko Surface and Coatings Technology.2024; 481: 130607. CrossRef
Super-wettability surface has various applications and actively studied in many fields. However water droplet transmissivity on super-wettability mesh was not be studied. This work is about water droplet transmissivity of an aluminum mesh with super-wettability on its surface. The mesh which fabricated surface structures with semi-permanent and non-etching process has super-wettability without strength drop of mesh structure. With this process, water droplet transmissivity was measured along various mesh pore per inch and dropping angle. Also water droplet transmissivity along dropping height was measure with super-hydrophobic mesh. As a result, super-hydrophilic mesh shows similar transmissivity behavior with bare mesh which has hydrophilic surface at high pore per inch and high dropping angle, super-hydrophobic 120 mesh shows lowest water droplet transmissivity in various situation.
In this study, we developed a convenient method to achieve superoleophobic surfaces on zinc substrates by using anodization and self-assembled monolayer coating, and to facilitate the fabrication of superoleophobic surfaces having reentrant structures, even for lower surface tension liquids than 30 mN/m- including hexadecane (γ = 27.5 mN/m). The liquid repellency of the structured surface was validated through observable experimental results; contact angle measurement. The optimal anodizing condition was determined as a critical parameter in building the superoleophobicity. The re-entrant had nanowire/microball structures formed by anodization with a high voltage. Under an optimized morphology by re-entrant structures with fluorination treatment, the contact angle over 150o is achieved, even for hexadecane.
A study about superhydrophobic surface started from the analysis of lotus leaf, and superhydrophobic surface fabrication methods have been researched. These methods cannot be used on various metals because the fabrication methods have complex and material-selective processes. In this work, we report a simple fabrication method using abrasive blasting and a self-assembled monolayer coating to produce a superhydrophobic surface. Abrasive blasting was used to create microstructures on metal surfaces. Random peak and valley microstructures were created after abrasive blasting, and a surface profile was measured to analyze the relationship between blasting pressure and a roughness parameter. A hydrophobic material coating was performed by a self-assembled monolayer method. Six kinds of metal surfaces displayed superhydrophobic properties. This utilitarian method could be applied to diverse applications.