Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

17
results for

"자동차"

Article category

Keywords

Publication year

Authors

"자동차"

Articles
Optimal Eco Driving Control for Electric Vehicle based on Reinforcement Learning
Hyun Joong Kim, Dong Min Kim, Su Hyeon Kim, Heeyun Lee
J. Korean Soc. Precis. Eng. 2024;41(5):355-364.
Published online May 1, 2024
DOI: https://doi.org/10.7736/JKSPE.024.020
Environmental issues have become a global concern recently. Countries worldwide are making efforts for carbon neutrality. In the automotive industry, focus has shifted from internal combustion engine vehicle to eco-friendly vehicles such as Electric Vehicles (EVs), Hybrid Electric Vehicles (HEVs), and Fuel Cell Electric Vehicles (FCEVs). For driving strategy, research on vehicle driving method that can reduce vehicle energy consumption, called eco-driving, has been actively conducted recently. Conventional cruise mode driving control is not considered an optimal driving strategy for various driving environments. To maximize energy efficiency, this paper conducted research on eco-driving strategy for EVs-based on reinforcement learning. A longitudinal dynamics-based electric vehicle simulator was constructed using MATLAB Simulink with a road slope. Reinforcement learning algorithms, specifically Deep Deterministic Policy Gradient (DDPG) and Deep QNetwork (DQN), were applied to minimize energy consumption of EVs with a road slope. The simulator was trained to maximize rewards and derive an optimal speed profile. In this study, we compared learning results of DDPG and DQN algorithms and confirmed tendencies by parameters in each algorithm. The simulation showed that energy efficiency of EVs was improved compared to that of cruise mode driving.
  • 8 View
  • 0 Download
Adaptive Control of Grinding Process based on Grinding Force for Removing the Coating from an Enameled Copper Wire
Sung-Jin Choi, Jun-Young Oh, Jin-Seo Kim, Sang-Kyung Lee, Wonkyun Lee
J. Korean Soc. Precis. Eng. 2023;40(5):361-366.
Published online May 1, 2023
DOI: https://doi.org/10.7736/JKSPE.023.036
A hairpin motor is a type of motor that is used for driving an eco-friendly car. Unlike a conventional coil-winding motor, hundreds of hairpins formed by an enameled copper wire with a rectangular cross section comprise a stator to improve the driving efficiency by maximizing a coil drip rate. With the increased use of the hairpin motor, there has been an increased interest in manufacturing techniques and automated systems of the hairpin motor. Enamel coating removal is one of the major processes of hairpin motor production; enamel coating at the end of the hairpin should be removed to connect the hundreds of hairpins by using the welding process. Grinding is one of the machining processes used for removing the enamel coating. This study proposed an adaptive control method for the grinding process to improve the efficiency and quality of the enamel coating removal process. Grinding depth is maintained during machining by controlling the vertical position of the spindle based on driving torque. A lab-scale grinding machine including a sensory system for adaptive control is developed and used to verify the performance of the proposed method.

Citations

Citations to this article as recorded by  Crossref logo
  • A Review of Intelligent Machining Process in CNC Machine Tool Systems
    Joo Sung Yoon, Il-ha Park, Dong Yoon Lee
    International Journal of Precision Engineering and Manufacturing.2025; 26(9): 2243.     CrossRef
  • 7 View
  • 0 Download
  • Crossref
A Study on the Prediction Model of the Radius of Curvature of the Subtle Feature of the Automotive Parts for Different Forming Conditions
Jae-Hyeong Yu, Kyu-Seok Jung, Yunchan Chung, Chang-Whan Lee
J. Korean Soc. Precis. Eng. 2023;40(1):49-55.
Published online January 1, 2023
DOI: https://doi.org/10.7736/JKSPE.022.101
The subtle feature is one of the characteristic lines and represents the most noticeable line in the automotive panel. In this study, we proposed a method to predict the radius of curvature of products according to the material, its thickness, its punch angle, and its punch radius. The radius of curvature was divided into three regions, namely, the non-linear, transition, and linear regions. In the non-linear region, the prediction model for the radius of curvature with different forming conditions was derived using the finite element analysis. In the linear region, the radius of curvature was assumed to be the sum of the punch radius and the thickness of the material. In the transition region, a model connecting two regions (Non-linear and linear region) was developed based on the continuity condition. The prediction model presented a very small RMSE with the value of 0.314 mm. Using the prediction model, the radius of curvature with various forming variables could be predicted and the required radius of punch, to obtain a certain value of the radius of curvature, could be precisely predicted.
  • 4 View
  • 0 Download
Real-Time Machine Vision-Based Inspection Method for Automotive Crash-Pad’s Stitch
Hyun Joong Yoon, Jin Gon Kim
J. Korean Soc. Precis. Eng. 2023;40(1):31-38.
Published online January 1, 2023
DOI: https://doi.org/10.7736/JKSPE.022.092
In response to the market’s need for luxurious automobile interiors, automotive parts makers are developing various types of crash pads to give drivers a sense of emotional luxury. In particular, a low-cost and high-quality crash pad manufacturing technology is being developed for mid- to low-priced vehicles, namely, the IMG-S (In Mold Grain-pre Stitch) technology. High defect rate of stitching is a critical problem during the manufacture of crash pad using the IMG-S technology. In order to solve this problem, this paper proposes a method of real-time machine vision inspection of stitches on the automotive crash pad. This paper presents the real-time machine vision inspection system configuration, proposes stitch and reference line detection methods, and method for calculating the distance between stitches and the reference line. According to the distance between the stitch and the reference line, the status of the stitch was judged as normal, warning, or erroneous, and the final result was displayed on the user interface. The applicability of the proposed real-time machine vision inspection method was verified by stitching the test line.
  • 5 View
  • 0 Download
Impact Safety Prediction of Automotive Reinforcement Seat Belt Parts for 590 MPa Grade Materials by Using Computer Simulation
Kee Joo Kim, Jae-Woong Lee
J. Korean Soc. Precis. Eng. 2022;39(7):529-535.
Published online July 1, 2022
DOI: https://doi.org/10.7736/JKSPE.022.035
High-strength steel, which has higher strength than ordinary steel, has emerged as a representative lightweight material because of its superior price competitiveness and easy application of manufacturing processes compared to other lightweight materials such as nonferrous metals and sandwich plates. Thus, the purpose of this study was to reduce the thickness and light weight of parts by applying high strength steel more than 600 MPa to various body parts. TR590 and DP590 high tensile steels were applied to the reinforcement seat belt front top and bottom components respectively. To this end, the impact simulation was performed, and the safety of the parts was investigated through FE-Analysis. Prototype molding evaluation confirmed the possibility of mass production of reinforcement seat belt front upper and lower components, using high tensile steel.
  • 5 View
  • 0 Download
Smart Design of Rotor and Permanent Magnet considering Torque and Torque Ripple of Interior Permanent Magnet Synchronous Motor of Electric Vehicle
Seong-Hwan Bang, Si-Mok Park, Min-Gi Chu, Ji-Hun Song, Dong-Ryul Lee
J. Korean Soc. Precis. Eng. 2021;38(8):605-612.
Published online August 1, 2021
DOI: https://doi.org/10.7736/JKSPE.021.043
The aim of this research was to investigate the torque performance of the motor in an electric vehicle depending on the rotor shape and air gap. The research focused on numerical comparison of torque performance of new rotors based on the average torque and torque ripple rate, which appeared according to the number and placement of permanent magnets. This research was numerically analyzed by MAXWELL V21.1. Average torque values in cases 1, 2, and 3 were increased, but vibration and noise in cases 1 and 3 were increased as the torque ripple rate increased. Considering the average torque and torque ripple rate, the torque performance of case 2 was the most optimal. Compared with Model N, the average torque of case 2 was increased by 9.1% and the torque ripple rate was reduced by 1.5%. The torque performance according to the size of air gap was compared with the basic model of case 2, which showed the best performance. An air gap of 0.7 mm applied to Model N showed the best torque performance. An additional magnet on case 2 and air gap of 0.7 mm provided the best torque performance and improved the driving motor performance for motor durability.

Citations

Citations to this article as recorded by  Crossref logo
  • Vehicle-motion-based Front Wheel Steer Angle Estimation for Steer-by-Wire System Fault Tolerance
    Seungyong Choi, Wanki Cho, Seung-Han You
    Journal of the Korean Society for Precision Engineering.2024; 41(5): 347.     CrossRef
  • Numerical Analysis of Outer-Rotor Synchronous Motors for In-Wheel E-Bikes: Impact of Number of Windings, Slot, and Permanent Magnet Shapes
    Jaewoong Han, Chanyoung Jin, Insu Cho, Jinwook Lee
    Applied Sciences.2024; 14(10): 4167.     CrossRef
  • 10 View
  • 0 Download
  • Crossref
A Study on the Smart Design and Cooling Performance of Electric Vehicle Motor Using Metal-Hybrid Materials
Sung-Hwan Bang, Dong-Ryul Lee
J. Korean Soc. Precis. Eng. 2021;38(8):595-603.
Published online August 1, 2021
DOI: https://doi.org/10.7736/JKSPE.021.039
The aim of this study is to numerically investigate the cooling performance of the electric vehicle motor depending on the attachment of the heat sink and materials to the cooling channel. The research focused on the numerical comparison of forced convective heat transfer coefficients with case 1 (Heat Sink-None, Cooling Channel-Al), case 2 (Heat Sink-None, Cooling Channel-Metal Hybrid Material), case 3 (Heat Sink-4EA, Cooling Channel-Al), and case 4 (Heat Sink-6EA, Cooling Channel-Al). To compare the cooling performance for novel design of the smart cooling system, selected local positions for various temperature distributions were marked on the coil surface. Normalized local Nusselt number of the cooling area at the normalized width position indicated that cooling performance of case 1 was on an average 8.05, 0.57, and 5.85% lower than that of cases 2, 3, and 4, respectively.

Citations

Citations to this article as recorded by  Crossref logo
  • Vehicle-motion-based Front Wheel Steer Angle Estimation for Steer-by-Wire System Fault Tolerance
    Seungyong Choi, Wanki Cho, Seung-Han You
    Journal of the Korean Society for Precision Engineering.2024; 41(5): 347.     CrossRef
  • 9 View
  • 0 Download
  • Crossref
Novel Design of Cooling Channel Utilizing Pin-Fin Vortex Generators in Electric Vehicle Driving Motor
Min-Gi Chu, Dong-Ryul Lee
J. Korean Soc. Precis. Eng. 2021;38(7):491-500.
Published online July 1, 2021
DOI: https://doi.org/10.7736/JKSPE.021.023
The objective of this study was to numerically accomplish the cooling performance of an electric vehicle driving motor depending on cooling channel design. Cooling performances of novel cooling channels were compared based on the temperature of coils and cooling channels as well as convection heat transfer coefficient in electric vehicle driving motors. Local axial positions of cooling channels at three different cases were marked for numerical comparison of heat transfer coefficients. Owing to forced convection by the boundary and flow conditions, the heat transfer coefficient of Case 3 at the location where pin-fins were attached in the cooling channel was improved 85.02 and 65.77% compared to Cases 1 and 2, respectively. In Case 3 with pin-fins having 50% of cooling channel length, the maximum temperature of the coil was 4.25% lower than that of Case 2 with pin-fins having 30% of the cooling channel length and 6.98% lower than that of Case 1 without pin-fins in the cooling channel. As a result, pin-fins finally diminished the maximum temperature of coils in Cases 2 and 3. Ultimately, Case 3 showed the best cooling performance for improving vehicle driving durability and developing next-generation electric vehicle cooling system technologies.
  • 6 View
  • 0 Download
This research is to investigate the cooling performance of the motor in the electric vehicle depending on the cooling channel fin. The research focused on numerical study of the temperature of coil and cooling channel and the heat transfer coefficients to find a optimum design shape with high cooling performance at three different cases. To compare the convective cooling performance of the three cooling channels, local position (R) are displayed on the surface of the coils with a large temperature deviation. This research was performed on forced convection and was numerically analyzed by FLUENT V20.2. Owing to forced convection by the same mass flow, the average cooling channel velocity in Case 3 was 17.4% faster than Case 1 and 8.6% faster than Case 2. Out of the three cases, the highest heat transfer coefficient was found in the cooling channel and coil of Case 3, which had two cooling fins. The coil maximum temperature of Case 3 with 2 cooling fins was 4.7% lower than Case 1 without cooling fins and 1.7% lower than Case 2 with 1 cooling fin. Ultimately, Case 3 with two cooling fins provided the best cooling performance and improved driving motor performance for motor durability.

Citations

Citations to this article as recorded by  Crossref logo
  • Thermal management strategies and power ratings of electric vehicle motors
    Jaya Antony Perinba Selvin Raj, Lazarus Godson Asirvatham, Appadurai Anitha Angeline, Stephen Manova, Bairi Levi Rakshith, Jefferson Raja Bose, Omid Mahian, Somchai Wongwises
    Renewable and Sustainable Energy Reviews.2024; 189: 113874.     CrossRef
  • 9 View
  • 0 Download
  • Crossref
A Study on Cooling Performance of Electric Vehicle Motor for Different Cooling Channel Shapes
Si-Mok Park, Seong-Hwan Bang, Min-Gi Chu, Ji-Hun Song, Dong-Ryul Lee
J. Korean Soc. Precis. Eng. 2021;38(6):417-425.
Published online June 1, 2021
DOI: https://doi.org/10.7736/JKSPE.021.019
This research investigated the cooling performance of the motor in electric vehicle depending on the shape of the cooling channel. The research, conducted numerically by FLUENT V20.1, focused on the numerical study of heat transfer coefficients to find an optimum design shape with high cooling performance. To compare the cooling performance, the temperatures in the coil and cooling channel were analyzed. As a result of forced convection, the average cooling channel velocity of Case 2 was 38% faster than Model N and 34% faster than Case 1. The maximum temperature of the cooling channel of Case 2 was 8.7% lower than Model N and 5.6% lower than Case 1. The minimum temperature of the coil of Case 2 was 2.7% lower than Model N and 4.3% lower than Case 1. The maximum temperature of the coil of Case 2 was 4.6% lower than Model N and 2.9% lower than Case 1. Ultimately, cooling channel of Case 2 showed the best cooling performance and improved driving performance for motor durability.

Citations

Citations to this article as recorded by  Crossref logo
  • Development of a novel electro-mechanical brake motor thermal management system for nonuniform heating under extreme thermal conditions
    Piljun Park, Hongseok Choi, Sangwook Lee, Sunoh Jeong, Hoseong Lee
    Energy Conversion and Management.2025; 325: 119406.     CrossRef
  • 8 View
  • 0 Download
  • Crossref
Optimization Design for Augmentation of Cooling Performance Utilizing Leading-Edge Materials in Electric Vehicle Battery Cells
Byeong Yeop Kim, Dong-Ryul Lee
J. Korean Soc. Precis. Eng. 2020;37(7):529-538.
Published online July 1, 2020
DOI: https://doi.org/10.7736/JKSPE.020.044
This study is to investigate the cooling performance of the battery in the electric vehicle depending on the attachment of the cooling plates and materials to the battery cells. Research focused on the numerical comparison of forced convective heat transfer coefficients with case 1(cell-Al, cooling plate-None), case 2(cell-Al, cooling plate-Al), case 3(cell-Al, cooling plate-C), and case 4(cell-C, cooling plate-Al). Normalized local Nusselt number of the cooling area at the normalized width position indicated that the heat transfer coefficient of the case 1 was averaging at 7, 14.5, 11.9% lower than that of case 2, case 3, and case 4. Based on case 3, the cooling performance with six different types of mass flow rates (0.05, 0.075, 0.0875, 0.1, 0.125, 0.15 kg/s) were compared. Normalized local Nusselt number at the normalized width position indicated that the heat transfer coefficient of 0.0875 kg/s was averaging at 35.8, 11.9% higher than that of 0.05, 0.075 kg/s and 12.3, 36.4, 60% lower than that of 0.1, 0.125, 0.15 kg/s. Ultimately, the best optimization design for air-cooling performance was case 3 with mass flow rate of 0.125 kg/s.
  • 5 View
  • 0 Download
This research is to investigate the augmentation of cooling performance of water-cooling in the electric vehicle secondary battery. The research focused on the numerical study of heat transfer coefficients for cooling performance augmentation. To improve the water-cooling performance with three different inlet sections of water-cooling and five different mass flow rates, air-cooling, and water-cooling were compared. To compare the water-cooling performance, selected local positions for various temperature distributions were marked on the battery cell surface. The normalized local Nusselt number of the cooling area at the normalized height position indicated that the heat transfer coefficient of the combined section was averaging at 77.95 and 58.33% higher than that of the circle and square, respectively. The heat transfer coefficient with the normalized width by water-cooling at combined section was averaging at 5.15 times higher than that of the air-cooling. At the normalized height, the cooling performance at the water flow rates of 10 Lpm was averaging at 68-74% higher than that of 5 Lpm and 35-39% lower than that of 25 Lpm. Ultimately, the best cooling performance existed with the combined section, and the water flow rate of 10 Lpm was most appropriate, given the temperature difference and power consumption.

Citations

Citations to this article as recorded by  Crossref logo
  • Influence of heat-transfer surface morphology on boiling-heat-transfer performance
    RenDa He, ZhiMing Wang, Fei Dong
    Heat and Mass Transfer.2022; 58(8): 1303.     CrossRef
  • 8 View
  • 0 Download
  • Crossref
A Study on Heat Radiation Performance for Different Layout of Electric Vehicle Secondary Battery Cell
Seung Bong Hyun, Byeong Yeop Kim, Ji Hun Song, Dong-Ryul Lee
J. Korean Soc. Precis. Eng. 2020;37(4):271-282.
Published online April 1, 2020
DOI: https://doi.org/10.7736/JKSPE.020.007
This study is to investigate the cooling performance of the secondary battery in electric vehicles according to three different gaps between battery cells. To accomplish the convective cooling performance of the battery surface with three different gaps, selected local positions (X, Y, Z) for various temperature distributions were marked on the gap surface contacting the cell surface. The cooling performance of the gap of 0.5 mm was compared with the gaps of 5 mm, and 1 mm. Normalized local Nusselt number of the cooling area at the normalized width position indicated that the gap of 0.5 mm was on average 26.99% lower than that of 5 mm and 0.49% lower than that of 1 mm. At the normalized height, the gap of 0.5 mm was on average 12.12% higher than that of 1 mm. Because of the vortex at the outlet area, cooling performance at the gap of 0.5 mm was on average 13.19% higher than that of 5 mm and 0.79% higher than that of 1 mm at normalized thickness. Ultimately, the best cooling performance existed at the gap of 5 mm, but the gap of 0.5 mm was best for improving space efficiency, energy storage capacity, and vehicle-driving durability.

Citations

Citations to this article as recorded by  Crossref logo
  • A Study on Cooling Performance Augmentation of Water-Cooling and Optimization Design Utilizing Carbon Material in Electric Vehicle Secondary Battery
    Seung Bong Hyun, Dong-Ryul Lee
    Journal of the Korean Society for Precision Engineering.2020; 37(7): 519.     CrossRef
  • Optimization Design for Augmentation of Cooling Performance Utilizing Leading-Edge Materials in Electric Vehicle Battery Cells
    Byeong Yeop Kim, Dong-Ryul Lee
    Journal of the Korean Society for Precision Engineering.2020; 37(7): 529.     CrossRef
  • 6 View
  • 0 Download
  • Crossref
A Study on the Convective Cooling Performance of the Secondary Battery in Electric Vehicle
Dong-Ryul Lee
J. Korean Soc. Precis. Eng. 2018;35(12):1157-1162.
Published online December 1, 2018
DOI: https://doi.org/10.7736/KSPE.2018.35.12.1157
This study is to investigate convection cooling performance of the Secondary Battery of Electric Vehicle without heat sink. Research is focused on the comparative study on cooling between forced convection and natural convection cooling. Selected local locations for various temperature distributions had shown in the flow domain. Final temperature on the cell surface has been compared by forced convection with natural convection. According to the results of velocity and temperature distributions in the fluid domain, Buoyancy appear by density difference in the natural convection. Apparent vortex was detected in the fluid domain for forced convection. According to calculations of convective heat transfer coefficient between cell and atmosphere in the battery pack, average value of more 70-78% heat transfer coefficient increased by forced convection than natural convection. Average temperature value of the cell surface decreased up to 46.50% by forced convection. Due to vortex by air, cooling performance of forced convection is excellent. In addition, cooling on edge of the battery is better than heat source location.

Citations

Citations to this article as recorded by  Crossref logo
  • A Study on Heat Radiation Performance for Different Layout of Electric Vehicle Secondary Battery Cell
    Seung Bong Hyun, Byeong Yeop Kim, Ji Hun Song, Dong-Ryul Lee
    Journal of the Korean Society for Precision Engineering.2020; 37(4): 271.     CrossRef
  • 7 View
  • 0 Download
  • Crossref
Recognition of Driving and Parking Lines for Intelligent Vehicles Using Bird Eye View System
Hyun Soo Bae, Suk Gyu Lee
J. Korean Soc. Precis. Eng. 2018;35(5):507-514.
Published online May 1, 2018
DOI: https://doi.org/10.7736/KSPE.2018.35.5.507
In this paper, we propose a noble line-recognition algorithm of driving parking for intelligent vehicles by using images obtained from a bird’s eye view system. To achieve safe driving and parking of unmanned vehicles, we need to obtain noiseless and effective images around vehicles. In addition, fast image processing is a fundamental requirement for the real time recognition of lanes and obstacles to ensure safety. In fact, the number of sensors equipped with conventional unmanned vehicles is reluctant to their commercialization. To solve this problem, we propose a noble method to detect straight lines and turning curves in the images obtained from a bird’s eye view system. For conventional vehicles equipped with this bird’s eye view system, straight lines and turning curves are detected by using a Hough and trigonometric function. Since parking lines have the form of a rectangle or parallelogram, detection of their vertexs makes it possible to determinate parking areas. In the case of a parking space without parking lines, the parking space is detected by using a stereo algorithm after calculating the area for parking. The experimental results using the proposed algorithm show that, without additional sensors, the lines and the surrounding environment are detected for unmanned driving and auto-parking.
  • 4 View
  • 0 Download