In mechanical braking systems, there are hot spots on the surface of a braking disc due to thermal deformation with a high thermal gradient. Controlling such hot spots is important for extending the life of a braking disc. In this study, surface temperatures of railway brake discs were monitored using infrared (IR) thermal imaging technique. A highspeed infrared camera with a maximum speed of 380 Hz was used to monitor surface temperature changes of the braking disc. Braking tests were performed with a full-scale dynamometer. During the braking test, the surface temperature change of the braking disc were monitored using a high-speed infrared camera. Hot spots and thermal damage observed on the surface of railway brake discs during braking tests were quantitatively analyzed using infrared thermographic images. Results revealed that monitoring disc surface temperature using IR thermographic technique can be a new method for predicting surface temperature changes without installing a thermocouple inside the disc.
Elderly monitoring systems are gaining significant attention in our increasingly aging society. Existing monitoring systems, which utilize RGB and infrared cameras, often encounter errors when recognizing human-like objects, photos, and videos as actual humans. Additionally, privacy concerns arise due to this issue. However, these challenges can potentially be overcome by employing thermal images. Thus, our study aimed to investigate the feasibility of identifying and categorizing human postures depicted in thermal images using deep learning models and algorithms. To conduct our experiment, we developed a system that utilizes a thermal pose algorithm and a convolutional neural network. As a result, we achieved an average accuracy of 88.3%, with the highest accuracy reaching 91.2%.
Damage to the units related to driving and running of the railway vehicle may cause an inevitable accident due to defects and malfunctions in operation. In order to prevent such an accident, a non-destructive diagnostic technology that detects the damage is required. Previous researchers have researched and developed a monitoring system of the infrared thermography method to diagnose the condition of the railway vehicle driving and driving units. A system for monitoring running of the railway vehicle and temperature condition of the drive unit at a vehicle speed of 30 to 100 km/h was constructed, and a study on its applicability was conducted. In this study, a system for diagnosing an abnormal condition of the driving and running units while the vehicle is running with an infrared thermography diagnostic system was installed in the depot and operation route, and evaluation of the abnormal condition of the driving and running units was performed. The results show that the diagnosis system using infrared thermography can be used to identify abnormal conditions in the driving and running units of a railway vehicle. The diagnosis system can effectively inspect the normal and abnormal conditions in operation of a railway vehicle.
The repeated thermal load on the railway wheel for tread brakes has been remarkably tightened due to increase in speed of trains and increase of operation frequency. As overheating and cooling between the wheel and brake block are continuously repeated, the railway wheel is damaged. To understand the process, thermal cracks for wheel tread can be experimentally reproduced under the condition of cyclic frictional heat from brake blocks, through bench experiments using a railway wheel. Thermal cracks generated in the wheel were investigated to observe the cracks’ initiation processes using full-scale brake dynamometer. Results show that as braking energy and braking temperature continued to accumulate, a hot spot appeared on the wheel surface and 2 mm of thermal crack occurred in the wheel rim.