The number of freeform buildings has been continuously increasing, serving as a landmark representing a country or a city. However, most of the freeform buildings have been built with conventional construction methods and required a tremendous amount of construction cost. This study seeks to apply additive manufacturing technologies to the freeform concrete formwork. Among many additive manufacturing techniques, the study focuses on the Laminated Object Manufacturing (LOM) method because of its advantages on building speed and cost. Also, the LOM technique is modified by using sloped angle at the side surface of the laminated layer (called Sloped-LOM or S-LOM), which yields great increase in the accuracy. We built a new FreeForm Formwork 3D Printer (named F3D printer) using the new approach. The F3D printer consists of a 5-axis laser cutting device for sloped cutting of EPS (Expanded Poly-Styrene) sheets with high speed, an auto pallet changer for EPS feeding, and a palletizer for EPS loading. This paper introduces the S-LOM method and the F3D printer, and the comparisons of the outputs from the conventional method and S-LOM method through actual formwork production.
Citations
Citations to this article as recorded by
Optimization Design of Student KSAE BAJA Knuckle Using SLM 3D Printer Young Woo Im, Geon Taek Kim, Hyeon Sang Shin, Kang Min Kim, Bu Hyun Shin, Jong Won Lee, Jinsung Rho Journal of the Korean Society for Precision Engineering.2023; 40(9): 719. CrossRef
Development of Connection Technology between Multi-Point Press and Flexible Mold for Manufacturing Free-Form Concrete Panel Jiyeong Yun, Jongyoung Youn, Jihye Kim, Donghoon Lee Buildings.2022; 12(6): 767. CrossRef
Development of an Adaptive Slicing Algorithm of Laminated Object Manufacturing Based 3D Printing for Freeform Formwork Dongyoun Lee, Junho Hong Buildings.2022; 12(9): 1335. CrossRef
Optimal slope cutting algorithm for EPS free-form formwork manufacturing Harim Kim, Heejae Ahn, Chanwoo Kim, Dongyoun Lee, Taehoon Kim, Yeonho Ko, Hunhee Cho Automation in Construction.2022; 143: 104527. CrossRef
Seismic Performance of F3D Free-Form Structures Using Small-Scale Shaking Table Tests Min Jae Park, Gain Cheon, Robel Wondimu Alemayehu, Young K. Ju Materials.2022; 15(8): 2868. CrossRef
An Analytical Study of the Latest Trends of Free-Form Molds Jongyoung Youn, Jiyoung Yun, Sungjin Kim, Bumjin Han, Sunglok Do, Donghoon Lee Sustainability.2022; 14(5): 3084. CrossRef
Development of Side Mold Control Equipment for Producing Free-Form Concrete Panels Jiyeong Yun, Kyeongtae Jeong, Jongyoung Youn, Donghoon Lee Buildings.2021; 11(4): 175. CrossRef
Micro-/nano-scale biological ‘soft’ structures have attracted increasing interest in biomedical research, including the study of cell-material interactions. However, most materials of micro-/nano-fabrication are not suitable for biological applications, as they require extensive post-processing or exhibit high mechanical stiffness. On the other hand, soft materials exhibiting high cytocompatibility require long fabrication times with a decreased spatial resolution of features. Thus, a facile fabrication technique of micro-/nano-scale structures of biological soft materials using a cost-effective and high-throughput method is needed. To achieve this, this study proposed a one-step 3D microfabrication method for biological soft materials in cooperation with a light-induced self-focusing photo-polymerization, a controlled oxygen reaction-diffusion, and digital microprinting. For instance, it was anticipated that this microfabrication technique of soft material provides efficient simple 3D scaffold platform that can address the questions of neural mechanobiology studies on the interaction between biological artificial axons bundle and neurons.