Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

3
results for

"적층 제조 특화 설계"

Article category

Keywords

Publication year

Authors

"적층 제조 특화 설계"

Articles
A Case Study on Productivity Innovation through Convergence of Sand 3D Printing Technology
Kuk-Hyun Han, Jin-Wook Baek, Sang Yun Park, Tae Wan Lim, Ju Min Park
J. Korean Soc. Precis. Eng. 2021;38(9):651-657.
Published online September 1, 2021
DOI: https://doi.org/10.7736/JKSPE.021.073
Recently, competition in the manufacturing industry related to the preoccupation of new markets has drastically changed due to the increase in small quantity batch production products. Besides, business models utilizing 3D printing technology suitable for flexible manufacturing are gaining interest. As 3D printing technology is becoming more common, Design for Additive Manufacturing is also in the spotlight. However, the productivity of 3D printing technology is still insufficient in terms of mass production. In this study, the possibility of innovation in mass production process that combines 3D printing technology is presented through the case of innovation in manufacturing productivity of medium-speed engine cylinder head through the integration of sand 3D printing technology. It outlines how sand 3D printing technology is applied to cylinder head mass production processes, how the quality of cylinder head products can be improved compared to conventional pattern-based molding methods, and how productivity can be maximized by reducing process time and human error through hybrid production method with sand 3D printed integrated design cores. In conclusion, this paper presents the effectiveness of sand 3D printing technology which can secure product competitiveness by increasing the production capacity of mass production process, reducing production costs, improving quality, and reducing loss.

Citations

Citations to this article as recorded by  Crossref logo
  • Digital Transformation of Metal Casting Process Using Sand 3D Printing Technology with a Novel Methodology of Casting Design Inside a Core
    Kuk-Hyun Han, Jin-Wook Baek, Tae Wan Lim, Ju Min Park
    International Journal of Metalcasting.2023; 17(4): 2674.     CrossRef
  • 9 View
  • 0 Download
  • Crossref
Additive Manufacturing of a Release Agent Injection Manifold for Hot Forging
Hak-Sung Lee, Min-Kyo Jung, Eun-ah Kim, Soonho Won, Do Wock Chun, Taeho Ha
J. Korean Soc. Precis. Eng. 2021;38(9):675-682.
Published online September 1, 2021
DOI: https://doi.org/10.7736/JKSPE.021.065
In this study, design for additive manufacturing (DfAM) of release agent injection manifold for hot forging has been performed to achieve weight reduction and flow path optimization. The weight reduction of 53.5% was achieved, thereby enabling the application of stainless steel 316L, which has high strength and corrosion resistance. Lightweight manifolds using Al-Mg-10Si and SUS316L materials were fabricated by PBF-type metal 3D printer. The feasibility test showed that mold life was improved by 14% by solving residual release agent problem. In addition, the flow path optimization results suggested that the flow standard deviation of each outlet dropped sharply from 264 to 75 ㎤/s. This approach demonstrated that DfAM for release agent manifold could be applied to increase mold life and improve product quality and productivity for hot forging.

Citations

Citations to this article as recorded by  Crossref logo
  • Optimize Design of Flow Divider and Verification of the PBF 3D Printing Process
    Jae-Hwi Lee, Jae-Ho Shim, Dong-Hun Sin, Yong-Seok Yang, Dong Soo Kim
    Journal of Flexible and Printed Electronics.2024; 3(2): 249.     CrossRef
  • Additive Manufacturing for Rapid and Precise Pattern Formation in Shoes Mold
    Seok-Rok Lee, Eun-Ah Kim, Ye-Rim Kim, Dalgyun Kim, Sunjoo Kim, Soonho Won, Hak-Sung Lee
    Journal of the Korean Society for Precision Engineering.2023; 40(3): 211.     CrossRef
  • 7 View
  • 0 Download
  • Crossref
Lightweight Design of a Vacuum Gripper for Inspection Equipment Using Topology Optimization
Euddeum Cha, Tae-Young Kim, Taeho Ha, Keun Park
J. Korean Soc. Precis. Eng. 2021;38(9):683-690.
Published online September 1, 2021
DOI: https://doi.org/10.7736/JKSPE.021.051
Owing to recent advances in additive manufacturing technology, design for additive manufacturing (DfAM) has been used to overcome design limitations due to constraints in traditional manufacturing processes. In this study, we applied DfAM technology to design lightweight and consolidated vacuum grippers for inspection equipment. We proposed a consolidated design to reduce manufacturing time and costs, which previously encompassed assembling eleven components. Topology optimization was used to reduce part weight while maintaining structural rigidity and safety, and two optimization models were designed: two-piece and one-piece models. Based on these optimized geometries, the internal vacuum paths were designed in a curved shape to enhance adsorption characteristics. Numerical simulations were conducted to evaluate the structural performance and flow characteristics of the initial design and the two optimization models. The pressure drop of the one-piece model, which was the best design, was reduced to 1/8 of the initial design and the structural safety factor was predicted to be 6.37. This final design was then additively manufactured by a digital light processing type 3D printer and the weight of the resulting parts was reduced from 12.94 to 2.08 g. Experimental observation found that the additively manufactured vacuum gripper showed enhanced absorption performance compared to the initial design.

Citations

Citations to this article as recorded by  Crossref logo
  • A Study on Improvement of Flow Characteristics of TPMS Heat Exchanger based on Mathematical Filtering
    Seo-Hyeon Oh, Jeong Eun Kim, Ji Seong Yun, Do Ryun Kim, Jungwoo Kim, Chang Yong Park, Keun Park
    Journal of the Korean Society for Precision Engineering.2024; 41(7): 541.     CrossRef
  • A Study on Injection Mold Design Using Topology Optimization
    Mi-Jin Kim, Jae-Hyuk Choi, Gyeng-Yun Baek
    Journal of the Korean Society of Manufacturing Process Engineers.2022; 21(4): 100.     CrossRef
  • 10 View
  • 1 Download
  • Crossref