Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

2
results for

"전기차"

Article category

Keywords

Publication year

Authors

"전기차"

SPECIAL

Air- and Bone-conduction Effects in Vehicle Interior Noise and Vibration Evaluation: A 12-DOF Human Model-head Finite Element Study
Jongyeon Yoon, Daeun Jeong, Namkeun Kim
J. Korean Soc. Precis. Eng. 2025;42(9):713-721.
Published online September 1, 2025
DOI: https://doi.org/10.7736/JKSPE.025.085

The rise of electric vehicles (EVs) has led to a reduction in engine noise, making suspension and road noise more noticeable. However, most assessments focus only on air-conducted (AC) pathways and overlook bone-conducted (BC) transmission. This study identifies key sources of vehicle noise and implements a finite-element simulation to replicate real-world driving conditions. A 12-degree-of-freedom (DOF) human body model quantifies how vibrations transmit from the vehicle structure to the head. Additionally, a detailed finite-element model of the human head evaluates basilar-membrane (BM) vibrations for both AC and BC inputs. The results indicate that BC dominates below 10 Hz, producing BM velocities up to 50 dB greater than AC. Above 10 Hz, AC prevails, showing a difference of approximately 40 dB. Notably, at frequencies of 33, 46, 67, and 80 Hz, the AC–BC difference narrows to below 10 dB, highlighting significant BC effects even at higher frequencies. These findings reveal that neglecting bone-conduction pathways can lead to an underestimation of occupant exposure to low-frequency vibrations. Therefore, comprehensive evaluations and control methods for vehicle noise should consider both AC and BC transmission mechanisms to accurately reflect human perception

  • 14 View
  • 0 Download
Article
A Study on the Design of Rear Wheel Drive Reducer for Electric Vehicle
Myeong Ho Kim, Zhen Qin, Ki Hun Lee, Qi Zhang, Sung Ki Lyu
J. Korean Soc. Precis. Eng. 2018;35(6):571-577.
Published online June 1, 2018
DOI: https://doi.org/10.7736/KSPE.2018.35.6.571
The aim of this study is to design the gearbox of an electric vehicle using the rear-wheel drive. The gearbox is a set of revolving gears and shafts based on programmed torque and rotations per minute (rpm). In this case, safety, strength and durability of gears and shafts was considered. In the narrow vehicle, a light case is used. In addition to gear safety and deflection, the weight of the vehicle was reduced. The electric vehicle reducer gearbox was modeled according to the vehicle room. The strength analysis was conducted using finite element method (FEM). After analyzing the strength using FEM to verify stress distribution, the design was modified, and compared with the results of altered design using FEM. As a result, the reducer gearbox of electric vehicle was designed according to incorporate gear safety, deflection of each gear, durability, and analysis of finite elements followed by test assessment, vehicle installation and the production of real parts.

Citations

Citations to this article as recorded by  Crossref logo
  • Sensitivity Analysis on Driving Characteristics According to Change in Gear Ratio of a Front Wheel Drive Electric Vehicle
    Young-Kap Son, Jeong-Min Kim
    Journal of the Korean Society of Manufacturing Process Engineers.2022; 21(9): 50.     CrossRef
  • A Study on the Optimum Design of Planetary Gear Train for Air-Starting Motor
    Nam-Yong Kim, Seong-Bae Park, Sung-Ki Lyu
    Journal of the Korean Society of Manufacturing Process Engineers.2022; 21(12): 135.     CrossRef
  • Simulation and experimental study on lubrication of high-speed reducer of electric vehicle
    Fuchun Jia, Yulong Lei, Xianghuan Liu, Yao Fu, Jianlong Hu
    Industrial Lubrication and Tribology.2021; 73(3): 500.     CrossRef
  • Study on the Reduction of Gear Whine Noise in Diesel Engine Gear Train
    Qi Zhang, Yong Bo Wang, Jian Hua Lv, Zhong Gang Zhu, Zhen Qin, Sung Ki Lyu
    Journal of the Korean Society for Precision Engineering.2019; 36(9): 867.     CrossRef
  • A Study on the Optimal Design of Drive Gear for Transfer Gearbox
    MyeongJin Song, MyeongHo Kim, Zhen Qin, DongSeon Kim, NamSool Jeon, SungKi Lyu
    Journal of the Korean Society for Precision Engineering.2019; 36(2): 121.     CrossRef
  • 7 View
  • 0 Download
  • Crossref