Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

2
results for

"진동해석"

Article category

Keywords

Publication year

Authors

"진동해석"

Articles
A Study on the High Efficiency and Low Noise Design of Electric Industrial Gearboxes
Nam Yong Kim, Jin-Uk Baek, Sung Ki Lyu
J. Korean Soc. Precis. Eng. 2024;41(4):243-250.
Published online April 1, 2024
DOI: https://doi.org/10.7736/JKSPE.023.099
Development and research on electric vehicles in power transmission system are increasing as the demand for ecofriendly and autonomous vehicles increases across the industry. In order to reduce noise, research on high efficiency and low noise due to electrification of the gearbox system is being actively conducted, such as applying design technology to optimize the shape of the gear and increase rigidity. In particular, research on low noise is active because the noise of the electric gearbox could be easily recognized in a vehicle, even with small noise due to its frequency characteristics. Therefore, in this study, effects of main specifications of gears on noise and power loss were studied and analyzed through a Parametric Study. Characteristics of the proportional relationship between noise and power loss according to major specifications were analyzed. Based on study results, NVH analysis in the gear system was performed. After that, actual data were secured through test measurements and a noise reduction effect of 4.4 dB was confirmed.
  • 5 View
  • 0 Download
Vibration Analysis of Flexible Rotor with Angular Contact Ball Bearings Using a General Bearing Stiffness Model
Van-Canh Tong, Seong-Wook Hong
J. Korean Soc. Precis. Eng. 2018;35(12):1179-1189.
Published online December 1, 2018
DOI: https://doi.org/10.7736/KSPE.2018.35.12.1179
The vibration analysis of flexible rotor systems supported by angular contact ball bearings is presented. Vibration analysis of rotor-ball bearing systems has often been performed via simplification of supporting bearings as linear springs with constant stiffness. In this study, an improved model of rotor-ball bearing systems was proposed. It utilizes a general bearing model based on response and time-dependent bearing characteristics. The system equations of motion were established using the finite-element method and numerically solved using the Newmark-β method. The method was used to recalculate the bearing stiffness matrices at every interval of numerical integration as a function of the instantaneous bearing displacements using a separated five-degrees-of-freedom bearing model. The method was verified via comparison with experimental data available in the literature. The extended simulations were conducted to investigate the unbalanced responses of a rotor-ball bearing system using the proposed and conventional methods. Numerical results showed a meaningful discrepancy between the vibrational responses obtained by the proposed model using the response and timedependent bearing stiffness model and the traditional constant-stiffness model.

Citations

Citations to this article as recorded by  Crossref logo
  • Study on Thermo-mechanical Modeling and Analysis of High-speed Angular Contact Ball Bearings Under Oil-jet Lubrication
    Gilbert Rivera, Shinhyang Park, Chan-sik Kang, Dongjoo Kim, Seong-Wook Hong
    Journal of the Korean Society for Precision Engineering.2024; 41(7): 569.     CrossRef
  • 7 View
  • 0 Download
  • Crossref