Microchannels machining can be used to make micro molds for microfluidic chips. The fluid flow in the channel can be controlled, by changing the cross sectional shape of the channel. V-shaped channels with a specific angle are not easily made with the etching process. This study presents the mechanical machining of microchannels of V-shaped cross section, on cemented carbide (WC-Co). In this study, to reduce tool wear in the process of machining, the micro conical tool was fabricated using polycrystalline diamond (PCD). The tool wear of the conical tool and form accuracy of channels, were investigated during V-shaped microchannel machining.
Citations
Citations to this article as recorded by
Micro Hole Machining Characteristics of Glassy Carbon Using Electrical Discharge Machining (EDM) Jae Yeon Kim, Ji Hyo Lee, Bo Hyun Kim Journal of the Korean Society for Precision Engineering.2025; 42(4): 325. CrossRef
Machining Characteristics of Micro EDM of Silicon Carbide Ju Hyeon Lee, Chan Young Yang, Bo Hyun Kim Journal of the Korean Society for Precision Engineering.2024; 41(2): 131. CrossRef
Study on Micro Grooving of Tungsten Carbide Using Disk Tool Min Ki Kim, Chan Young Yang, Dae Bo Sim, Ji Hyo Lee, Bo Hyun Kim Journal of the Korean Society for Precision Engineering.2024; 41(2): 123. CrossRef
Micro tool fabrication is crucial in micro machining. Wire electro-discharge grinding (WEDG) is one of the popular methods applied to fabricate micro tools used for micro electrical discharge machining (EDM), electrochemical machining (ECM), and ultrasonic machining (USM). WEDG can machine micro tools or features regardless of workpiece hardness. In WEDG, however, the machining speed is relatively low and the discharge gap control is not easy. In this study, the micro mechanical machining using the polycrystalline diamond is introduced to fabricate the micro cylindrical tool or micro pin of the tungsten carbide. This method demonstrates the possibility of applying ductile machining of tungsten carbide without brittle fracture or cracks. This paper compared the machining characteristics such as material removal rate and surface roughness with the PCD-mechanical machining and WEDG.
Citations
Citations to this article as recorded by
Micro Hole Machining Characteristics of Glassy Carbon Using Electrical Discharge Machining (EDM) Jae Yeon Kim, Ji Hyo Lee, Bo Hyun Kim Journal of the Korean Society for Precision Engineering.2025; 42(4): 325. CrossRef
Machining Characteristics of Micro EDM of Silicon Carbide Ju Hyeon Lee, Chan Young Yang, Bo Hyun Kim Journal of the Korean Society for Precision Engineering.2024; 41(2): 131. CrossRef
Study on Micro Grooving of Tungsten Carbide Using Disk Tool Min Ki Kim, Chan Young Yang, Dae Bo Sim, Ji Hyo Lee, Bo Hyun Kim Journal of the Korean Society for Precision Engineering.2024; 41(2): 123. CrossRef
SEM Image Quality Improvement and MTF Measurement Technique for Image Quality Evaluation Using Convolutional Neural Network Chan Ki Kim, Eung Chang Lee, Joong Bae Kim, Jinsung Rho Journal of the Korean Society for Precision Engineering.2023; 40(4): 275. CrossRef
EDM Using Wire Electrical Discharge Milling Electrode Do Kwan Chung Journal of the Korean Society for Precision Engineering.2022; 39(1): 21. CrossRef
Micro Drilling of Single Crystal SiC Using Polycrystalline Diamond Tool Ui Seok Lee, Chan Young Yang, Ju Hyeon Lee, Bo Hyun Kim Journal of the Korean Society for Precision Engineering.2021; 38(7): 471. CrossRef