In the framework of the 4th industrial revolution, modern machine-building rapidly converges with IOT technology. This requires very high precision machining of the parts and assemblies, such as electronics, vehicle and components, agricultural and construction machines, optical instruments, and machine tools. However, high precision machinery is quite expensive, and there exists a general need for low-cost equipment. While many researchers are working on this, their major focus is on cutting tools. This study aimed to compensate for errors and enhance machinery precision by adding a servo controller to the processing unit. Consequently, the study is on servo control and processing precision for processing utilizing ECTS (Error Compensation Tool Servo) to compensate for errors.
Since IBM introduced the first hard disk drive (HDD) with 5 MB capacity in 1956, tremendous advances have been achieved in HDD technology and business. The areal density has increased 650 million times in the last 60 years. To implement the digital servo systems for high capacity HDD, elaborate servo patterns should be written on the disk surface during manufacturing processes. This process is called servo track writing (STW). When the servo track pitch reaches 50 nano-meter, the position error resolution should be less than 5 nano-meter for the drive servo and STW operations. The STW technology is in the realm of nano-mechatronics and should address precision motion control and manufacturing issues. Initially, all STW process were conducted inside the clean-room using special STW equipment. With ever-increasing track density, as well as the STW time and manufacturing costs, the industry has developed the STW technology that could move the STW operation to the outside of the clean-room and eliminate special equipment. Many innovative STW technologies have been invented and successfully implemented such as conventional STW, multi-disk writers, printed magnetic printing STW, spiral STW and spiral-seeded STW. With the successful implementation of these state-of-the-art technologies, HDD production has become more efficient and flexible.
Citations
Citations to this article as recorded by
An Optimal Approach to Auto-tuning of Multiple Parameters for High-Precision Servo Control Systems Nam Guk Kim Journal of the Korean Society of Manufacturing Process Engineers.2022; 21(7): 43. CrossRef