The precision-guided projectile is a weapon system for precision attacks, and the cannon-launched projectile is guided by a control device. The electrical actuator system is a subsystem of the control device, and the whole projectile undergoes high axial and lateral impact force for 1 to 10mseconds. In this study, a charpy, and a tensile impact analysis were conducted, using specimens made in the materials of SUS630 and Al7075-T6 to understand fracture mechanics and impact property, such as energy change rate. The impact analysis and gas-gun impact test were conducted, to validate the optimized housing model.
In this study, a numerical analysis on the impact response of HHA (High Hardness Armor Plate) sequences under a 7.62 mm projectile impact was performed to obtain the fundamental design data for a combat-vehicle platform. Recently, the ballistic-protection levels for combat vehicles have increased, and ballistic-protection designs should now be able to deflect multi-hit projectiles. To study the ballistic-impact characteristics, armor-plate sequences of one or two layers with a gap of 0 mm to 2 mm between the front and rear plate were defined under the same weight and thickness. For the certification of the reliability of the numerical model, ballistic tests and an analysis of the single plate under the 7.62 mm projectile impact were performed and analyzed. On the basis of a valid numerical model, a numerical analysis was performed and analyzed. Lastly, it was proved that the performances of the two-layer sequence with the 2 mm gap regarding the impact-response acceleration, deflection efficiency, and penetration depth are the highest.
The goal of this paper is to investigate the effects of out-of-plane deposition angle on product characteristics of a UV photo-curing process. Specimens are manufactured from a commercialized UV photo-curing machine, the NOBEL V1.0. The influence of the out-of-plane deposition angle of the specimen on surface characteristics, including morphology of the sloped surface, pick-to-pick distance of convex region, and roughness of the sloped surface, is examined via the observation of the sloped surface. In addition, the influence of the radius of curvature of the specimen on the surface roughness of the sloped surface is evaluated. The effects of the out-of-plane deposition angle on impact strength of specimens are investigated via Izod impact experiments. Finally, we discuss the influence of the out-of-plane deposition angle on failure characteristics of specimens for impact loads.