Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

1
results for

"클래스 불균형"

Article category

Keywords

Publication year

Authors

"클래스 불균형"

Article
Methods for Fault Diagnosis in Mechanical Systems based on Deep Learning in the Absence or Class Imbalance of Fault Data
Yongjae Jeon, Young Woon Choi, Sang Won Lee
J. Korean Soc. Precis. Eng. 2023;40(5):345-351.
Published online May 1, 2023
DOI: https://doi.org/10.7736/JKSPE.023.030
Deep learning-based fault diagnosis systems for prognostics and health management of mechanical systems is an active research topic. Notably, the absence and class imbalance of fault data (insufficient fault data compared to normal data) have been shown to cause many challenges in developing fault diagnosis systems for the manufacturing fields. Therefore, this paper presents case studies using deep learning algorithms in the absence or class imbalance of fault data. Auto-encoder-based anomaly detection method, which can be used when fault data is absent, was applied to diagnose faults in a robotic spot welding process. The anomaly detection threshold was set based on the reconstruction error of trained normal data and the confidence level of the distribution of normal data. The anomaly detection performance of the auto-encoder was verified using non-trained normal data and three sets of fault data through the threshold. As a case study for insufficient fault data, synthetic data was generated based on cGAN and applied to diagnose fault of bearing. Using the imbalanced dataset to generate synthetic fault data and to reduce the imbalance ratio, it was confirmed that the accuracy of the synthetic data generation-based 2DCNN fault diagnosis model was improved.

Citations

Citations to this article as recorded by  Crossref logo
  • Distribution of Force Applied to a Lateral Damper during EMU Operation
    Hyun Moo Hur, Kyung Ho Moon, Seong Kwang Hong
    Journal of the Korean Society for Precision Engineering.2024; 41(9): 673.     CrossRef
  • 7 View
  • 0 Download
  • Crossref