Anodic aluminum oxide (AAO) is widely used in various industrial fields to increase the mechanical property or corrosion resistance of the product surface. In this study, mechanical properties were measured according to the thickness of AAO through the nanoindentation test. The maximum indentation load, elastic modulus, and hardness were measured for different thicknesses of AAO. It was confirmed that the majority of the mechanical property values increased with the thickness. Various fracture shapes based on the thickness were analyzed by observing pressure marks on the surface using FE-SEM equipment. Apparently, it is proposed that the optimum AAO thickness with desired mechanical properties can be obtained, which is expected to possess immense economic value as per the optimization of the production time of AAO based products.
Citations
Citations to this article as recorded by
In-situ Wired and Wireless Material Testing System with Nanometer-level Displacement Control Kyoung Seok Park, Pill Ho Kim, Chung-Seog Oh Journal of the Korean Society for Precision Engineering.2024; 41(11): 881. CrossRef
In this paper, we present a simple and robust fabrication method for mushroom-shaped microstructures using diverse polymers with various modulus of elasticity. Through the repeated replica molding process, we fabricated the same PDMS mushroom structure negative mold as the prepared silicon master mold. To evaluate the fabricating stability of the fabricated PDMS negative mold, the mushroom-shaped structures were replicated from the mold using six types of polymer resins with different elastic modulus and we measured superhydrophobic properties on the samples. All the fabricated samples exhibited superhydrophobicity, and we proved the structural stability of the proposed replication method through the measured SEM images, contact angles on the samples, and theoretical analysis based on the structural shape.
Citations
Citations to this article as recorded by
Mastering of NIL Stamps with Undercut T-Shaped Features from Single Layer to Multilayer Stamps Philipp Taus, Adrian Prinz, Heinz D. Wanzenboeck, Patrick Schuller, Anton Tsenov, Markus Schinnerl, Mostafa M. Shawrav, Michael Haslinger, Michael Muehlberger Nanomaterials.2021; 11(4): 956. CrossRef
Picosecond ultrasonic evaluation on the Young’s modulus of a ceramic thin-film was performed in the present study. A 100nm thick silicon nitride thin-film was deposited on a silicon wafer using the plasma enhanced chemical vapor deposition technique and gigahertz-frequency longitudinal bulk waves were excited in the film using a femtosecond laser setup. A thermoelastic equation was numerically solved using the finite difference method and compared to the experimental data to estimate the elastic property of the film. Results show that the present measurement technique can effectively evaluate the film’s Young’s modulus and it is recognized that the modulus is 60-70% lower than that of its bulk status. This study is expected to provide a way to characterize nanoscale ceramics with very high spatial and temporal resolutions for the design and analysis of microelectromechanical systems and thin-film based devices.