The Forming Limit Diagram (FLD) is a criterion used to assess the formability of sheet metal during a manufacturing process. Traditionally, FLDs are obtained through manual measurements using Mylar tape or through the use of automatic deformation measurement systems such as ARMIS and ARGUS. However, the use of Mylar tape is not user-friendly and can result in errors. Additionally, the cost of using automatic measuring equipment is high. To address these challenges, we propose a method that utilizes a low-cost USB digital microscope and the Python-based open-source library, OpenCV, to obtain forming limit diagrams. This approach allows for the measurement of deformation on specimens by analyzing circles printed on them. To evaluate the performance of this method, a circular grid was printed on a sus430 0.3 t specimen and a nakajima test was conducted. The strain data obtained using this system was then compared to the FLD obtained with the ARGUS system. The results confirmed that the formability of sheet metal can be assessed at a lower cost using our proposed method.
Incremental sheet metal forming can be used to manufacture various products without the punch and die set. However, it is difficult to manufacture the desired shape due to section deflection and springback of the sheet. Section deflection is caused by the force of the blank holder for fixing the sheet and the tool for forming the sheet. In this study, we analyzed the characteristics of the section deflection according to the geometries of the circular cup shapes in the sheet incremental forming process. The section deflection increased with an increase in the entering radius and forming angle in the section deflection region. However, section deflection was constant according to the exit radius. In addition, the secondary forming process for reducing the shape error was introduced. The secondary incremental forming process was conducted in the opposite direction. Characteristics of the shape error according to the entering depth of the tool among the forming parameters for reducing the shape error of the cup shape were analyzed. The springback in the cup-shape was reduced by the additional forming process with an optimum entering depth of the tool.
Citations
Citations to this article as recorded by
Study on the Incremental sheet metal forming process using a metal foam as a die Jae-Hyeong Yu, Kyu-Seok Jung, Mohanraj Murugesan, Wan-Jin Chung, Chang-Whan Lee International Journal of Material Forming.2022;[Epub] CrossRef
Study on the Incremental Sheet Forming Process with the Ball Type Tool Jun-Hyun Kyeong, Byeong-Hyeop Lee, Sun-Jae Lee, Kyeong-Hoon Cho, Hyung-Won Youn, Chang-Whan Lee Journal of the Korean Society for Precision Engineering.2022; 39(5): 371. CrossRef
Tool Path Design of the Counter Single Point Incremental Forming Process to Decrease Shape Error Kyu-Seok Jung, Jae-Hyeong Yu, Wan-Jin Chung, Chang-Whan Lee Materials.2020; 13(21): 4719. CrossRef