As the global manufacturing industry moves toward carbon neutrality, improving energy efficiency of machine tools has become essential. Although machine tools contribute significantly to industrial energy consumption, systematic methods for evaluating their energy consumption remain insufficient. To address this issue, this study developed an energy consumption evaluation system based on ISO 14955, the international standard for machine tool energy efficiency. The proposed system enabled a detailed analysis of energy usage patterns in different operating states, identifying key areas for energy reduction. The developed system could measure energy consumption of individual machine tool components in various operating states using power meters and automatically generates reports. This allows users to identify which components and operating states consume the most energy. We tested and validated this system on three different machine tools and analyzed strategies for reducing energy consumption. The developed evaluation system can help machine tool manufacturers integrate it into their equipment, develop energy-efficient technologies, and contribute to sustainable manufacturing.
Citations
Citations to this article as recorded by
Recent Advances in CNC Technology: Toward Autonomous and Sustainable Manufacturing Jong-Min Lim, Wontaek Song, Joon-Soo Lee, Ji-Myeong Park, Hee-Min Shin, In-Wook Oh, Soon-Hong Hwang, Seungmin Jeong, Sangwon Kang, Chan-Young Lee, Byung-Kwon Min International Journal of Precision Engineering and Manufacturing.2025; 26(9): 2311. CrossRef
The surface of railway wheels running on rails is subject to damage due to rail and frictional wear, damage from wheel tread and flange wear caused by curved track operations, and damage from flats and concave wear due to braking friction heat from brake shoes. Although the surface of wheels is regularly reprofiled through periodic grinding cycles, damage occurring to the wheel surface during operation can lead to deteriorated ride quality and potential failure due to crack propagation. In domestic railway components technical standards, wheel integrity is mandated to be demonstrated through non-destructive testing. To prevent and detect failures caused by damage occurring on railway wheels, it is necessary to develop methods that could detect and evaluate surface damage. The present study investigated a method for detecting and evaluating surface damage on railway wheels using electromagnetic imaging. Results demonstrated that defects with a length of 10 mm, a width of 0.8 to 1.0 mm, and a depth of 0.2 to 1.0 mm could be adequately detected using electromagnetic scan images.
The Technical Specification for Interoperability (TSI) legally mandates the prediction and verification process of the Reliability, Availability, Maintainability and Safety (RAMS) in signaling and communication systems. Recently, domestic regulations, including the Railroad Safety Act, have been strengthened in order to better meet the requirements for participating in international projects. To comply with these regulatory requirements, manufacturers and development organizations must prepare verification data pertaining to the reliability and safety of railway components and related systems. This paper aims to analyze the requirements of Failure Mode, Effects and Criticality Analysis (FMECA) through international laws and standards, and subsequently propose a compliant FMECA system for the domestic railway industry. The proposed FMECA system is then compared with the analysis results of actual failure data to determine its suitability for establishing a Reliability, Availability, Maintainability (RAM) verification standard for railway products in relation to conformity assessment.
In this study, the Inertial Measurement Unit (IMU) signals and clinical evaluation scales for Parkinson"s disease were correlated. The study included 16 patients diagnosed with Parkinson"s disease. Each subject was evaluated based on Korean Mini-Mental State Examination (KMMSE), Unified Parkinson"s Disease Rating Scale (UPDRS) part 3, New Freezing of Gait Questionnaire (NFOGQ) parts 2 & 3, and Hoehn & Yahr Scale (H&Y). All subjects performed the Time Up and Go test by attaching IMU sensors to both ankles and torso. Based on the tilting angle of torso and the time of first step, the freezing and non-freezing windows were determined. Seven IMU features involving the ankle signals were calculated in the specific window. Spearman’s correlation analysis of clinical evaluation scales was performed. As a result, the freezing index and power of locomotion band (0.3-3 Hz) were recommended to determine UPDRS part 3. Also, the intensity of the locomotion band facilitated evaluation of NFOGQ part 3 regardless of freezing of gait.
Due to the recent 4th industrial revolution and explosive interest in smart factories, the demand for industrial robots and related technologies is rapidly increasing. In order to develop a precision reducer for robots, a measurement technology of the small teeth of a gear is very important. This paper developed a method to measure the tooth shape of a precision harmonic reducer for robots and to evaluate the tooth shape measurement error quantitatively. The tooth shape of the flexspline of a harmonic drive was measured using three instrumental devices: a stylus, a projector, and a laser line scanner. A mathematical tool was also developed to evaluate the error by comparing the designed and measured teeth. The measured tooth profile was quantitatively assessed with maximum, average, and root mean square error. The measurement method using a stylus has disadvantages of careful measurement effort and a small measuring range. However, it has better precision. On the other hand, the projection method shows a moderate performance without much effort during measurement.
Citations
Citations to this article as recorded by
The Prediction of the Angular Transmission Error of a Harmonic Drive by Measuring Noncontact Tooth Profile and Considering Three-dimensional Tooth Engagement Beom-Seok Kim, Seung-Tae Jeong, Hyeong-Joon Ahn International Journal of Precision Engineering and Manufacturing.2023; 24(3): 371. CrossRef
This paper proposes a UKF-Based indoor localization method that evaluates the optimal position of a robot by fusing the position information from encoders and the distance information of the obstacle measured by ultrasonic sensors. UKF is a method of evaluating the robot’s position by transforming optimal sigma points extracted using the unscented transform and is advantageous for the localization of a nonlinear system. To solve the problem of the specular reflection effect of ultrasonic sensors, we propose a validation gate that evaluates the reliability of the ranges measured by sonar sensors, that can maximize the quality of the position evaluation. The experimental results showed that the method is stable and convergence of the position error regardless of the size of the initial position error and the length of the sampling time.
This paper proposes a practical method, for evaluating 3-D positioning of outdoor mobile robots using the Unscented Kalman Filter (UKF). The UKF method does not require the linearization process unlike conventional EKF localization, so it can minimize effects of errors caused by linearization of non-linear models for position estimation. Also, this method does not require Jacobian calculations difficult to calculate in the actual implementation. The 3-D position of the robot is predicted using an encoder and tilt sensor, and the optimal position is estimated by fusing these predicted positions with the GPS and digital compass information. Experimental results revealed the proposed method is stable for localization of the 3D position regardless of initial error size, and observation period.
Citations
Citations to this article as recorded by
Research on Parameter Compensation Method and Control Strategy of Mobile Robot Dynamics Model Based on Digital Twin Renjun Li, Xiaoyu Shang, Yang Wang, Chunbai Liu, Linsen Song, Yiwen Zhang, Lidong Gu, Xinming Zhang Sensors.2024; 24(24): 8101. CrossRef
A Study on Improving the Sensitivity of High-Precision Real-Time Location Receive based on UWB Radar Communication for Precise Landing of a Drone Station Sung-Ho Hong, Jae-Youl Lee, Dong Ho Shin, Jehun Hahm, Kap-Ho Seo, Jin-Ho Suh Journal of the Korean Society for Precision Engineering.2022; 39(5): 323. CrossRef
The sanding device support bracket is part of the axle box and is one of the railway vehicles parts that must withstand extremely harsh environments. Conventional welded structure type brackets were cracked at welds during operation, requiring design changes. To minimize harsh environments and manufacturing errors, this review was conducted from the design stage, and design changes were made through several trial and error. In this paper, the optimal design was derived by performing topology optimization on the model designed and manufactured through trial and error and applied to the actual vehicle. The comparison of the existing model with the empirically designed model confirmed the improvement of the optimal design using the topology optimization. The optimized design was verified by the analysis and the vibration test of IEC 61373 was satisfied. The test parts based on the optimal design were applied to the actual vehicle and the performance was verified. In the optimum design process, the shape and material as well as the weight analysis were performed and finally the brackets were designed to be light in weight and improved in strength.
Citations
Citations to this article as recorded by
Experimental study on the influencing factors of particles jetting behavior in train sanding adhesion enhancement Z.H. Yue, S.Y. Zhang, H.H. Ding, X.X. Song, Q. Lin, J. Guo, W.J. Wang Powder Technology.2024; 448: 120302. CrossRef
Study on the Optimal Design of Column Rib Structure of Horizontal Machine Tool Using Topology Optimization Technique Ji-Sang Hwang, Sung-Jae Kim, Chul-Hoon Sung Journal of the Korean Society of Manufacturing Technology Engineers.2023; 32(1): 1. CrossRef
Optimal Design and Experimental Validation of the Rib Structure of a Manufacturing Machine Bed Using Topology Optimization Ji-Sang Hwang, Sung-Jae Kim, Jeong-Hyun Yoon, Chul-Hoon Sung Journal of the Korean Society of Manufacturing Technology Engineers.2023; 32(6): 374. CrossRef
Despite the importance of the usage stage in life cycle assessment (LCA), there is a lack of comprehensive studies on the usage stage modeling. Based on the literature review, this paper establishes a general framework of the usage stage modeling by redefining existing models and proposing new models. The proposed computational framework can provide the overview of the current research as well as lead researchers and practitioners to consider proper modeling techniques. The framework includes the representative usage scenario method, usage context modeling, and time series usage modeling. Also, future research directions are suggested with the proposed computational framework.
In this study, optimum design algorithm for composite ship structures is applied to a 52-ft. yacht to conduct comparative analyses by life cycle assessments, through which a material design method is proposed to cope with environmental regulation of the ship. Through the case study, the weight of the ship was reduced, and life cycle assessments of the original and lightweight vessels were performed using SimaPro 8. Weight was reduced by 10.47%. Also, at ‘In Production’, global warming and ozone layer depletion indicators decreased by 26.3 and 42.9%, respectively. At ‘In Use’, global warming and ozone layer depletion indicators decreased by 3.81%, with the ship operating for 20 years. Environmental impact of unit weight glass fiber and resin (raw materials used in composite structures) were compared. It was found that resin has higher impact on global warming and ozone depletion than glass fiber by factors of two and eight, respectively. Consequently, it was confirmed that a material design that preferentially reduces content of resin improves the eco-friendly performance of the composite ship.
Citations
Citations to this article as recorded by
Accounting for wave-induced environmental uncertainty in CO₂ emission predictions for maritime operations Jaewon Jang, Jong Hun Woo, Daekyun Oh Science of The Total Environment.2025; 1007: 180955. CrossRef
Decarbonation Effects of Mainstream Dual-Fuel Power Schemes Focus on IMO Mandatory Regulation and LCA Method Zhanwei Wang, Shidong Fan, Zhiqiang Han Journal of Marine Science and Engineering.2025; 13(5): 847. CrossRef
Optimized Diesel–Battery Hybrid Electric Propulsion System for Fast Patrol Boats with Global Warming Potential Reduction Maydison, Haiyang Zhang, Nara Han, Daekyun Oh, Jaewon Jang Journal of Marine Science and Engineering.2025; 13(6): 1071. CrossRef
Retrofitting Technologies for Eco-Friendly Ship Structures: A Risk Analysis Perspective Athanasios Kolios Journal of Marine Science and Engineering.2024; 12(4): 679. CrossRef
Enhanced predictive modeling vs. LCA simulation: A comparative study on CO2 emissions from ship operations Jaewon Jang, Seunghun Lim, Sang-Bom Choe, Jin-Soo Kim, Hyung-Kyoon Lim, Jungmo Oh, Daekyun Oh Ocean Engineering.2024; 310: 118506. CrossRef
Environmental implications of a sandwich structure of a glass fiber-reinforced polymer ship Zhiqiang Han, Jaewon Jang, Jean-Baptiste R.G. Souppez, Maydison, Daekyun Oh Ocean Engineering.2024; 298: 117122. CrossRef
Application of Life Cycle Assessment to Analysis of Fibre Composite Manufacturing Technologies in Shipyards Industry Aleksandra Ziemińska-Stolarska, Mariia Sobulska, Monika Pietrzak, Ireneusz Zbiciński Processes.2024; 12(3): 461. CrossRef
Comparison of structural design and future trends in composite hulls: A regulatory review Zhiqiang Han, Jaewon Jang, Jean-Baptiste R.G. Souppez, Hyoung-Seock Seo, Daekyun Oh International Journal of Naval Architecture and Ocean Engineering.2023; 15: 100558. CrossRef
A Study of Structural Strength Characteristics for Application of Carbon Composites in Fishing Vessel Hull Hae-Soo Lee, Hyung-Won Lee, Seung-June Choi, Myung-Jun Oh Journal of Society of Korea Industrial and Systems Engineering.2023; 46(3): 69. CrossRef
Can TRIZ (Theory of Inventive Problem Solving) strategies improve material substitution in eco-design? Christian Spreafico Sustainable Production and Consumption.2022; 30: 889. CrossRef
Effects of fabric combinations on the quality of glass fiber reinforced polymer hull structures Daekyun Oh, Jaewon Jang, Jae-hoon Jee, Yongwon Kwon, Sanghyuk Im, Zhiqiang Han International Journal of Naval Architecture and Ocean Engineering.2022; 14: 100462. CrossRef
An analysis of design strategies for circular economy through life cycle assessment Christian Spreafico Environmental Monitoring and Assessment.2022;[Epub] CrossRef
Ultrasonic Attenuation Characteristics of Glass-Fiber-Reinforced Polymer Hull Structure Zhiqiang Han, Sookhyun Jeong, Jae-Won Jang, Jong Hun Woo, Daekyun Oh Applied Sciences.2021; 11(14): 6614. CrossRef
Light-weight Optimum Design of Laminate Structures of a GFRP Fishing Vessel Jae-Won Jang, Zhiqiang Han, Daekyun Oh Journal of Ocean Engineering and Technology.2019; 33(6): 495. CrossRef
This paper proposes a 3D localization method for an outdoor mobile robot. This method assesses the 3D position including the altitude information, which is impossible in the existing 2D localization method. In this method, the 3D position of the robot is predicted using an encoder and an inclination sensor. The predicted position is fused with the position information obtained from the DGPS and the digital compass using extended kalman filter to evaluate the 3D position of the robot. The experimental results showed that the proposed method can effectively evaluate the 3D position of the robot in a sloping environment. Moreover, this method was found to be more effective than the conventional 2D localization method even in the evaluation of the plane position where altitude information is unnecessary.
Citations
Citations to this article as recorded by
Research on Parameter Compensation Method and Control Strategy of Mobile Robot Dynamics Model Based on Digital Twin Renjun Li, Xiaoyu Shang, Yang Wang, Chunbai Liu, Linsen Song, Yiwen Zhang, Lidong Gu, Xinming Zhang Sensors.2024; 24(24): 8101. CrossRef
Unscented Kalman Filter Based 3D Localization of Outdoor Mobile Robots Woo Seok Lee, Min Ho Choi, Jong Hwan Lim Journal of the Korean Society for Precision Engineering.2020; 37(5): 331. CrossRef
The additive manufacturing (AM) process is known to have a major influence on environmental impact. To find out AM process with lower environmental impact in the product manufacturing process, this study compares material extrusion (Fused Deposition Modeling, FDM), powder bed fusion (Laser Sintering, LS) and material jetting processes (Poly-Jet, PJ) for 200 NIST test artifacts, using data from the specification and software of three 3D printers (J750, P770 and uPrint SE Plus), the findings from various literature and Ecoinvent of SimaPro 8.4 database. The results showed that the effects of materials on the environment were the severest for LS (20.45 Pts) and the least for FDM (10.38 Pts) although the effects of power consumption on the environment were severest for FDM (126.91 Pts) and least for LS (20.18 Pts). To reduce the emission to environment in PJ and FDM, it is recommended to improve their printing speed and reduce power consumptions of waterjet and auxiliary equipment for support removal.
Citations
Citations to this article as recorded by
Environmental Impact of Fused Filament Fabrication: What Is Known from Life Cycle Assessment? Antonella Sola, Roberto Rosa, Anna Maria Ferrari Polymers.2024; 16(14): 1986. CrossRef
Embodied CO2 Reduction Effects of Free-Form Concrete Panel Production Using Rod-Type Molds with 3D Plastering Technique Seunghyun Son, Dongjoo Lee, Jinhyuk Oh, Sunkuk Kim Sustainability.2021; 13(18): 10280. CrossRef
Environmental sustainability evaluation of additive manufacturing using the NIST test artifact JuYoun Kwon, Namhun Kim, Jungmok Ma Journal of Mechanical Science and Technology.2020; 34(3): 1265. CrossRef
Sustainability of additive manufacturing: the circular economy of materials and environmental perspectives Henry A. Colorado, Elkin I. Gutiérrez Velásquez, Sergio Neves Monteiro Journal of Materials Research and Technology.2020; 9(4): 8221. CrossRef
In this paper, we compare the cost of the structure due to change of weight of the structure according to change of annual power generation and height, calculated by changing wind speed of a 10kW horizontal small wind turbine, Optimum height of the wind turbine was considered. The cost of each model was calculated by changing height of the structure to 12 m, 24 m, 30 m, and 36 m. Wind speed was calculated by the Deacon formula, and annual power generation was calculated based on annual average wind speed at power generation height of each model. Then, economic efficiency was evaluated by comparing cost of the structure with total profit over the lifetime calculated by annual power generation, and a suitable model was selected based on evaluation. Computer analysis was conducted to evaluate structural stability of the selected model.
This paper proposes a practical method, for evaluating positioning of outdoor mobile robots using Unscented Kalman Filter (UKF). Since the UKF method does not require the linearization process unlike EKF localization, it can minimize effects of errors caused by linearization of non-linear models for position estimation. This method enables relatively high performance position estimation, using only non-inertial sensors such as low-precision GPS and a digital compass. Effectiveness of the UKF localization method was verified through actual experiments and performance of position estimation was compared with that of the existing EKF method. Experimental results revealed the proposed method has better performance than the EKF method, and it is stable regardless of initial error size, and observation period.
Citations
Citations to this article as recorded by
Localization-based waiter robot for dynamic environment using Internet of Things Muhammad Waqas Qaisar, Muhammad Mudassir Shakeel, Krzysztof Kędzia, José Mendes Machado, Ahmed Zubair Jan International Journal of Information Technology.2025; 17(6): 3675. CrossRef
Research on Parameter Compensation Method and Control Strategy of Mobile Robot Dynamics Model Based on Digital Twin Renjun Li, Xiaoyu Shang, Yang Wang, Chunbai Liu, Linsen Song, Yiwen Zhang, Lidong Gu, Xinming Zhang Sensors.2024; 24(24): 8101. CrossRef
Indoor Localization of a Mobile Robot based on Unscented Kalman Filter Using Sonar Sensors Soo Hee Seo, Jong Hwan Lim Journal of the Korean Society for Precision Engineering.2021; 38(4): 245. CrossRef
Unscented Kalman Filter Based 3D Localization of Outdoor Mobile Robots Woo Seok Lee, Min Ho Choi, Jong Hwan Lim Journal of the Korean Society for Precision Engineering.2020; 37(5): 331. CrossRef
Fluid Catalytic Cracking (FCC) Unit is a large-pressure vessel that converts heavy crude oil, which cannot be distilled, into light crude oil. With the growing interest in renewable energy sources due to environmental regulations, various studies investigating FCC Units are ongoing. The catalytic reactor in FCC Unit is a large structure that generates prolonged high pressure, leading to changes in the properties of the material during operation. Therefore, stress analysis must be conducted based on the application of the actual mechanical properties. In cylindrical thin structures such as the FCC reactor, a tensile test is difficult to perform, warranting the need for Shear Punch (SP) test that uses a small specimen. The properties were utilized in finite element analysis. To determine the boundary and load conditions needed for stress analysis, the operational conditions of the reactor and the conditions for internal pressure of ASME Code regulation were used to evaluate the stress.