Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

2
results for

"폴리우레탄"

Article category

Keywords

Publication year

Authors

"폴리우레탄"

Articles
Performance Characteristics of a Soft Gripper Fabricated by Additive Manufacturing Process
Woojin Jeong, Chae Young Park, Jongho Shin, In Hwan Lee
J. Korean Soc. Precis. Eng. 2023;40(10):781-785.
Published online October 1, 2023
DOI: https://doi.org/10.7736/JKSPE.023.082
Soft robots, known for their flexible and gentle movements, have gained prominence in precision tasks and handling delicate objects. Most soft grippers developed thus far have relied on molding processes using high-elasticity rubber, which requires additional molds to produce new shapes, limiting design flexibility. To address this constraint, we present a novel approach of fabricating pneumatic soft grippers using thermoplastic polyurethanes (TPU) through the Fused Filament Fabrication (FFF) technique. The FFF technique enables the creation of various gripper shapes without the need for additional molds, allowing for enhanced design freedom. The soft grippers were designed to respond to applied air pressure, enabling controlled bending actions. To evaluate their performance, we conducted quantitative measurements of the gripper’s shape deformation under different air pressure conditions. Moreover, force measurements were performed during gripper operation by varying the applied air pressure and adjusting the mounting angle. The results of this study provide valuable insights into the design and control of soft grippers fabricated using TPU and the FFF process. This approach offers promising opportunities for employing soft robots in various fields and paves the way for further advancements in robotics technology.

Citations

Citations to this article as recorded by  Crossref logo
  • Heated Syringe Extrusion for Soft Gripper Fabrication in Additive Manufacturing
    Kwang Yeol Yu, Woo Jin Jeong, In Hwan Lee
    International Journal of Precision Engineering and Manufacturing-Smart Technology.2025; 3(1): 59.     CrossRef
  • Multi-material additive manufacturing process design of sensor embedded soft gripper
    Kwang Yeol Yu, Hochan Kim, In Hwan Lee
    Sensors and Actuators A: Physical.2025; 386: 116322.     CrossRef
  • Application of Image Recognition Technology in Nozzle Cleaning for Material Extrusion Additive Manufacturing Processes
    Ho-Chan Kim, Yong-Hwan Bae, Hae-Yong Yun, In-Hwan Lee
    Journal of the Korean Society of Manufacturing Process Engineers.2024; 23(11): 20.     CrossRef
  • Construction of a Pneumatic Control System for Soft Gripper
    Seongyeon Kim, Kiseong Kim, Jongho Shin, Jungho Cho
    Journal of the Korean Society of Manufacturing Process Engineers.2024; 23(6): 30.     CrossRef
  • 16 View
  • 0 Download
  • Crossref
Degradation Progression of Polyurethane Hydraulic Reciprocating Seal
Junho Bae, Koo-Hyun Chung
J. Korean Soc. Precis. Eng. 2018;35(7):701-706.
Published online July 1, 2018
DOI: https://doi.org/10.7736/KSPE.2018.35.7.701
In this work, the degradation progression of a polyurethane (PU) hydraulic reciprocating seal with respect to the sliding distance were investigated using a pin-on-reciprocating tribo-tester. Also, the acceleration effect of alumina particles added in lubricant on degradation of PU seal were assessed, with an aim to contribute to the development of accelerated wear testing methods. As a result, It was shown that the height of PU specimens decreased drastically at the initial stage of sliding. Then, the height decrease was found to become gradual as sliding distance further increased. The result also shows that the height decrease of the PU specimen was mainly due to the effect of the compression set and wear. In addition, the noted abrasive wear of the PU specimens was found to be significantly accelerated due to the alumina particles in lubricant, which determined a further result in 50 % faster height decrease with increasing sliding distance, as compared to the normal lubricant. The outcome of this work may provide significant and useful information for the prediction of the lifetime of a hydraulic reciprocating seal, and for the continued development of accelerated wear testing of the hydraulic reciprocating seal.
  • 5 View
  • 0 Download