This paper is a study of the machining characteristics, cutting force and surface roughness of a turning center by laserassisted machining. The laser-assisted machining (LAM) is an effective method to improve the machinability of difficult-tocut materials. The LAM has recently been studied for various machining processes, but the research on the threedimensional and turning-center machining is still insufficient. In this study, a machining experiment of the turning-center process was performed by the laser-assisted machining with Inconel 718. Before the machining experiment, performed to thermal analysis was for a selected to effective depth of cut. The cutting force and surface roughness were compared and analyzed. The machining experiment confirmed that the machinability was improved in the LAM.
Citations
Citations to this article as recorded by
An Analytical Study on the Thermal-Structure Stability Evaluation of Mill-Turn Spindle with Curvic Coupling Choon-Man Lee, Ho-In Jeong Journal of the Korean Society of Manufacturing Process Engineers.2020; 19(1): 100. CrossRef
Rolled and extruded aluminum (Al) products have been widely used in heat exchanging systems using the boiling heat transfer (BHT) mechanism. The BHT coefficient can be increased on a rough surface due to the activation of the nucleation sites. In this study, the BHT characteristic of an Al plate with directional surface roughness (bare Al plate), which was generated in rolling or extrusion process, was measured and compared with the polished Al plates with non-directional surface roughness. The BHT coefficient of polished Al plate was increased with increasing surface roughness, saturated at ~300 nm (Sa). Although the surface roughness of the bare Al plate was 380-430 nm (Sa), the BHT coefficient of bare Al plates were lower than the polished Al plates with similar surface roughness. To examine the lower BHT coefficient of bare Al plate, the directional surface roughness was characterized by vertical and horizontal surface roughness values to the production direction, and we experimentally concluded the lower surface roughness value (horizontal surface roughness) was the dominant factor for the BHT characteristic of a rolled or extruded Al plate with directional surface roughness.
Citations
Citations to this article as recorded by
Three-dimensional fin-tube expansion process to achieve high heat transfer efficiency in heat exchangers Seong-Yeop Kang, Sae-Rom So, Yong Son, Seonghun Park, Man-Yeong Ha, Sang-Hu Park Journal of Mechanical Science and Technology.2019; 33(9): 4401. CrossRef
Basic Experimental Study on Fin-Tube Expansion Process Using an Additive Manufactured Spiral-Grooved-Expanding Ball Seong Yeop Kang, Changwan Han, Yong Son, Seong Hun Park, Sang Hu Park Journal of the Korean Society for Precision Engineering.2019; 36(7): 667. CrossRef
Basic Experimental Study on Fin-Tube Expansion Process Using an Additive Manufactured Spiral-Grooved-Expanding Ball Seong Yeop Kang, Changwan Han, Yong Son, Seong Hun Park, Sang Hu Park Journal of the Korean Society for Precision Engineering.2019; 36(7): 667. CrossRef
Carbon Fiber Reinforced Plastics (CFRP) is an encouraging material for aerospace and automotive industries due to its light weight and high strength. Aerospace parts require precise dimensional tolerance and high machined surface quality for safety and reliability. Routing process is needed to produce satisfactory dimensional accuracy of CFRP parts. Machining defects of routing process are related to the cutting mode with respect to cutting angle and bonding strength between carbon fibers and polymer matrix. When the polymer matrix is transformed from polymer to amorphous state, bonding strength is declined. Therefore, cutting temperature is a critical parameter for CFRP machining process because glass transient temperature is relatively low. In this paper, cutting temperature was measured using thermal imaging camera. Machined surface roughness and maximum fiber pull-out depth were analyzed with respect to feed, spindle speed, and laminate structure.
Citations
Citations to this article as recorded by
A Study on the Improvement of Bonding Strength of Heterojunctions by Applying Laser Surface Treatment to Carbon Fiber Reinforced Plastics Huan Wang, Seong Cheol Woo, Chung-Ki Sim, Seong-Kyun Cheong, Joohan Kim Journal of the Korean Society for Precision Engineering.2022; 39(9): 683. CrossRef
Comparison Study on Side Milling of CFRP with AlCrN-based, Diamond-Like-Carbon(DLC), and Diamond-Coated End Mill Min-Woo Sa Journal of the Korean Society of Manufacturing Process Engineers.2020; 19(4): 9. CrossRef
Fabrication of Micro Tool Electrode by Micro EDM using Wear Ratio In Yong Moona, Do Kwan Chung, Bo Hyun Kim Journal of the Korean Society of Manufacturing Technology Engineers.2018; 27(1): 1. CrossRef