The collaboration of robots and humans sharing workspace, can increase productivity and reduce production costs. However, occupational accidents resulting in injuries can increase, by removing the physical safety around the robot, and allowing the human to enter the workspace of the robot. In preventing occupational accidents, studies on recognizing humans, by installing various sensors around the robot and responding to humans, have been proposed. Using the LiDAR (Light Detection and Ranging) sensor, a wider range can be measured simultaneously, which has advantages in that the LiDAR sensor is less impacted by the brightness of light, and so on. This paper proposes a simple and fast method to recognize humans, and estimate the path of humans using a single stationary 360° LiDAR sensor. The moving object is extracted from background using the occupied grid map method, from the data measured by the sensor. From the extracted data, a human recognition model is created using CNN machine learning method, and the hyper-parameters of the model are set, using a grid search method to increase accuracy. The path of recognized human is estimated and tracked by the extended Kalman filter.
This paper proposes a 3D localization method for an outdoor mobile robot. This method assesses the 3D position including the altitude information, which is impossible in the existing 2D localization method. In this method, the 3D position of the robot is predicted using an encoder and an inclination sensor. The predicted position is fused with the position information obtained from the DGPS and the digital compass using extended kalman filter to evaluate the 3D position of the robot. The experimental results showed that the proposed method can effectively evaluate the 3D position of the robot in a sloping environment. Moreover, this method was found to be more effective than the conventional 2D localization method even in the evaluation of the plane position where altitude information is unnecessary.
Citations
Citations to this article as recorded by
Research on Parameter Compensation Method and Control Strategy of Mobile Robot Dynamics Model Based on Digital Twin Renjun Li, Xiaoyu Shang, Yang Wang, Chunbai Liu, Linsen Song, Yiwen Zhang, Lidong Gu, Xinming Zhang Sensors.2024; 24(24): 8101. CrossRef
Unscented Kalman Filter Based 3D Localization of Outdoor Mobile Robots Woo Seok Lee, Min Ho Choi, Jong Hwan Lim Journal of the Korean Society for Precision Engineering.2020; 37(5): 331. CrossRef