This paper presents an improved input shaping method to eliminate vibration during circular interpolation of a flexible 2-axis positioning system. Due to the time delay introduced by input shaping, simultaneous 2-axis positioning with circular interpolation results in a certain amount of errors from the intended track or trajectory. This study investigated the track errors associated with circular interpolation caused by input shaping for a flexible 2-axis positioning system. The following three strategies for reducing such errors were proposed: velocity reduction in circular interpolation, adjustment of the time delay between 2 axes commands, and employment of a velocity profile compensation function. Simulations were performed to discuss the pros and cons of the three proposed strategies. Experiments were also performed to validate the results. Simulation and experiments showed that the track errors due to input shaping can be sufficiently reduced by combined use of the proposed strategies.
Citations
Citations to this article as recorded by
A Study on the Improvement of Machining Precision by Applying Input Shaping Method to Machining Center Kang-Ho Ko, Dong-Wook Lim, Seong-Wook Hong Journal of the Korean Society of Manufacturing Technology Engineers.2023; 32(4): 189. CrossRef
Input-shaping-based improvement in the machining precision of laser micromachining systems Dong-Wook Lim, Seong-Wook Hong, Seok-Jae Ha, Ji-Hun Kim, Hyun-Taek Lee The International Journal of Advanced Manufacturing Technology.2023; 125(9-10): 4415. CrossRef
Application of Input Shaping to a CNC Laser Processing Machine to Enhance Processing Precision Kang Ho Ko, Jin Uk Sim, Seong-Wook Hong Journal of the Korean Society of Manufacturing Technology Engineers.2022; 31(5): 346. CrossRef