This paper proposes a practical method, for evaluating 3-D positioning of outdoor mobile robots using the Unscented Kalman Filter (UKF). The UKF method does not require the linearization process unlike conventional EKF localization, so it can minimize effects of errors caused by linearization of non-linear models for position estimation. Also, this method does not require Jacobian calculations difficult to calculate in the actual implementation. The 3-D position of the robot is predicted using an encoder and tilt sensor, and the optimal position is estimated by fusing these predicted positions with the GPS and digital compass information. Experimental results revealed the proposed method is stable for localization of the 3D position regardless of initial error size, and observation period.
Citations
Citations to this article as recorded by
Research on Parameter Compensation Method and Control Strategy of Mobile Robot Dynamics Model Based on Digital Twin Renjun Li, Xiaoyu Shang, Yang Wang, Chunbai Liu, Linsen Song, Yiwen Zhang, Lidong Gu, Xinming Zhang Sensors.2024; 24(24): 8101. CrossRef
A Study on Improving the Sensitivity of High-Precision Real-Time Location Receive based on UWB Radar Communication for Precise Landing of a Drone Station Sung-Ho Hong, Jae-Youl Lee, Dong Ho Shin, Jehun Hahm, Kap-Ho Seo, Jin-Ho Suh Journal of the Korean Society for Precision Engineering.2022; 39(5): 323. CrossRef
This paper proposes a 3D localization method for an outdoor mobile robot. This method assesses the 3D position including the altitude information, which is impossible in the existing 2D localization method. In this method, the 3D position of the robot is predicted using an encoder and an inclination sensor. The predicted position is fused with the position information obtained from the DGPS and the digital compass using extended kalman filter to evaluate the 3D position of the robot. The experimental results showed that the proposed method can effectively evaluate the 3D position of the robot in a sloping environment. Moreover, this method was found to be more effective than the conventional 2D localization method even in the evaluation of the plane position where altitude information is unnecessary.
Citations
Citations to this article as recorded by
Research on Parameter Compensation Method and Control Strategy of Mobile Robot Dynamics Model Based on Digital Twin Renjun Li, Xiaoyu Shang, Yang Wang, Chunbai Liu, Linsen Song, Yiwen Zhang, Lidong Gu, Xinming Zhang Sensors.2024; 24(24): 8101. CrossRef
Unscented Kalman Filter Based 3D Localization of Outdoor Mobile Robots Woo Seok Lee, Min Ho Choi, Jong Hwan Lim Journal of the Korean Society for Precision Engineering.2020; 37(5): 331. CrossRef