Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

2
results for

"3D localization"

Article category

Keywords

Publication year

Authors

"3D localization"

Articles
Unscented Kalman Filter Based 3D Localization of Outdoor Mobile Robots
Woo Seok Lee, Min Ho Choi, Jong Hwan Lim
J. Korean Soc. Precis. Eng. 2020;37(5):331-338.
Published online May 1, 2020
DOI: https://doi.org/10.7736/JKSPE.019.066
This paper proposes a practical method, for evaluating 3-D positioning of outdoor mobile robots using the Unscented Kalman Filter (UKF). The UKF method does not require the linearization process unlike conventional EKF localization, so it can minimize effects of errors caused by linearization of non-linear models for position estimation. Also, this method does not require Jacobian calculations difficult to calculate in the actual implementation. The 3-D position of the robot is predicted using an encoder and tilt sensor, and the optimal position is estimated by fusing these predicted positions with the GPS and digital compass information. Experimental results revealed the proposed method is stable for localization of the 3D position regardless of initial error size, and observation period.

Citations

Citations to this article as recorded by  Crossref logo
  • Research on Parameter Compensation Method and Control Strategy of Mobile Robot Dynamics Model Based on Digital Twin
    Renjun Li, Xiaoyu Shang, Yang Wang, Chunbai Liu, Linsen Song, Yiwen Zhang, Lidong Gu, Xinming Zhang
    Sensors.2024; 24(24): 8101.     CrossRef
  • A Study on Improving the Sensitivity of High-Precision Real-Time Location Receive based on UWB Radar Communication for Precise Landing of a Drone Station
    Sung-Ho Hong, Jae-Youl Lee, Dong Ho Shin, Jehun Hahm, Kap-Ho Seo, Jin-Ho Suh
    Journal of the Korean Society for Precision Engineering.2022; 39(5): 323.     CrossRef
  • 9 View
  • 0 Download
  • Crossref
Extended Kalman Filter Based 3D Localization Method for Outdoor Mobile Robots
Woo Seok Lee, Min Ho Choi, Jong Hwan Lim
J. Korean Soc. Precis. Eng. 2019;36(9):851-858.
Published online September 1, 2019
DOI: https://doi.org/10.7736/KSPE.2019.36.9.851
This paper proposes a 3D localization method for an outdoor mobile robot. This method assesses the 3D position including the altitude information, which is impossible in the existing 2D localization method. In this method, the 3D position of the robot is predicted using an encoder and an inclination sensor. The predicted position is fused with the position information obtained from the DGPS and the digital compass using extended kalman filter to evaluate the 3D position of the robot. The experimental results showed that the proposed method can effectively evaluate the 3D position of the robot in a sloping environment. Moreover, this method was found to be more effective than the conventional 2D localization method even in the evaluation of the plane position where altitude information is unnecessary.

Citations

Citations to this article as recorded by  Crossref logo
  • Research on Parameter Compensation Method and Control Strategy of Mobile Robot Dynamics Model Based on Digital Twin
    Renjun Li, Xiaoyu Shang, Yang Wang, Chunbai Liu, Linsen Song, Yiwen Zhang, Lidong Gu, Xinming Zhang
    Sensors.2024; 24(24): 8101.     CrossRef
  • Unscented Kalman Filter Based 3D Localization of Outdoor Mobile Robots
    Woo Seok Lee, Min Ho Choi, Jong Hwan Lim
    Journal of the Korean Society for Precision Engineering.2020; 37(5): 331.     CrossRef
  • 8 View
  • 0 Download
  • Crossref