We introduce technological development of stencil lithography, for new micro and nano fabricated method as a patterning technique. Stencil lithography has advantages of photoresistless, reusable patterning technique, and large area micro and nano patterning. The principle of stencil lithography is as follows: Materials are deposited through perforated holes on the membrane surface, of stencil in micro and nanoscale. In this paper, the fabrication method and application of three types of stencils, are reviewed according to the material. Solid-state stencils based on silicon, are fabricated by micro-fabrication processing of photolithography and etching. Metal stencils are fabricated by metal etching, electroforming, and laser machining. Polymer stencils are fabricated by molding and casting of polymers, such as PDMS, Hydrogel and Photocrosslinkable polymer, etc. Stencils fabricated from a variety of ways may be applied to nanopatterns, nano-wire patterning, and metal electrode fabrication, and used in metal deposition or etching masks and non-planar surface metal patterning techniques. Stencil lithography is applied in various areas of flexible displays, bio-devices, wearable sensors, etc.
Citations
Citations to this article as recorded by
Single-cell patterning: a new frontier in bioengineering R. Gayathri, S. Kar, M. Nagai, F.-G. Tseng, P.S. Mahapatra, T.S. Santra Materials Today Chemistry.2022; 26: 101021. CrossRef
In this study, we propose a fabrication method of three-dimensional complex shape polydimethylsiloxane microstencils. Three-dimensional complex shape polydimethylsiloxane (PDMS) microstencils were fabricated by an air-knife system and PDMS casting form preparing master mold by photolithography, diffuser lithography and polyurethane acrylate (PUA) replication. PDMS microstencils shape was a production of the hemispherical and quadrangular pyramid. When the prepolymer of PDMS was spin-coated onto the three-dimensional complex shape master mold, a thin layer of prepolymer remained on top of the master"s structure and consequently prevented formation of perforated patterns. This residual layer was easily removed by the air-knife. The air-knife system was controlled by the flow rate of N2 gas and conveying speed of the master mold. Results revealed the fabricated three-dimensional complex shape PDMS microstencils, could be useful for application of three-dimensional cell culture device.
Citations
Citations to this article as recorded by
Review on Microstencil Lithography Technologies Jin Ho Choi, Hye Jin Choi, Gyu Man Kim Journal of the Korean Society for Precision Engineering.2018; 35(11): 1043. CrossRef