Fabrication of a durable and strong nanopatterned mold insert using metal sheet and plate is important for molding of thermoplastic materials. Conventionally, the nickel stamper replicating a master pattern by electroforming process has been used for injection molding of nanotextured products such as Blu-ray media. However, a more facile and cheaper mold fabrication process is highly required for manufacturing of functional products based on nanostructured surface. In this study, zirconia nanoparticles were blended with UV curing polymer to fabricate a polymer nanocompositebased nanopattern mold. Compared to the cured pure Ormostamp, the modulus of elasticity of the nanocomposite filled with approximately 54 vol% of zirconia nanoparticles increased by 160 times. Additionally, the modulus of elasticity reached 197 ㎬ by thermal decomposition of the UV-Cured polymer and post-annealing at 800°C of the nanoparticle layer. The nanopatterns were formed on stainless steel sheet and block, and applied to hot embossing of the PMMA films and injection molding of the COC materials, respectively. No deterioration of the mold occurred during the hot embossing 30 times and the injection molding 600 shots. Nanoparticle-enhanced UV curing nanocomposites or post-heat treatment methods are cost-efficient and easy, because many molds can be manufactured from one master pattern.
High-k dielectric thin films are widely applied in energy conversion/storage and information storage devices such as Dynamic Random access Memory (DRAM), Multilayer Ceramic Capacitor (MLCC), thermoelectric devices, etc. Among them, perovskite thin films, for instance, strontium titanate (STO) and barium titanate (BTO) are known to have extremely superior dielectric properties. Atomic layer deposition (ALD), can deposit thin films through atomic layering producing uniform and conformal high-k thin films with precise thickness control. While relatively low crystallinity of film quality due to low deposition temperatures of ALD can develop practical issues, they can be overcome by employing additional processes such as thermal annealing, plasma treatment, and seed layering. ALD, STO and BTO thin films treated with these additional processes demonstrate more improved crystallinity and electrical properties. In this paper, the processes to enhance properties of ALD high-k thin films, BTO and STO films are reviewed. Perspectives into high quality ALD high-k thin films as well as current efforts to further improve the film quality are discussed.