Directed energy deposition (DED) additive manufacturing technology enhances the functionality of existing or damaged parts by adding metallic materials to the surfaces. Blown-powder DED technology utilizes a focused, high-energy source to fuse the part’s surface with the supplied metal powder. Maintaining a constant stand-off distance (SOD), the distance between the deposition head and the workpiece, is a key factor in ensuring deposition quality, as variations in SOD will change the powder focus position and the laser spot size on the surface. Therefore, traditional additive manufacturing systems require CAD or pre-scanned surface data. In this study, we proposed auto-surface tracking technology. No workpiece CAD data or pre-scanned surface data are required, and in-situ measurement and feedback control can automatically consider the deposition height differences that cause a change in SOD when depositing the next layer. The accuracy of the SOD measurements and feedback control error was verified using a step height sample. The mean SOD measurement error was 4.7 ㎛ with a standard deviation of 42 ㎛ (reference SOD, 14 ㎜). The feasibility of the autosurface tracking technology was confirmed through the additive manufacturing processes of the gear and an actual blanking mold applied in the defense and industrial fields.